Pi-calculus

proof-techniques, asynchrony, mobility

Francesco Zappa Nardelli

INRIA Rocquencourt, MOSCOVA research team

francesco.zappa_nardelli@inria.fr

MPRI Concurrency course with:

Pierre-Louis Curien (PPS), Roberto Amadio (PPS), Catuscia Palamidessi (INRIA Futurs)

MPRI - Concurrency November 3, 2006

Premises

e Unless otherwise stated, all the equivalences mentioned are weak equivalences;

e reduction barbed congruence = reduction-closed barbed congruence = natural
contextual equivalence;

e (at the blackboard) one vertical bar = two vertical bars || .

Other doubts?

We can start now...

How to prove...

To show that two processes are bisimilar, it is enough to fo find a bisimulation
relating them. Easy?

Example: we want to show that (in the pi-calculus) bisimilarity is preserved by
parallel composition. We naturally consider

R={P||R,Q||R):P~qQ}

as a candidate bisimulation. But...

The candidate bisimulation

. may be larger than at first envisaged;
. may be infinite;
example: to show that x(2).7(z) = (vw)(x(z).w(z) || w(v).y{v)), we must consider:
{(2(2).7(2), (vw)(z(2).w(z) || w(v).y(v)))}
U {@(a), vw)(w(a) || w(v).y(v))): a arbitrary}
U {@(a), (vw)(0 || y{a))) : a arbitrary}
U {(0, (vw)(0 [0))}

. hard to guess;

which is the smallest bisimulation relating !! P and ! P?

. awkward to describe and to work with...

Completing relations

Idea: find classes of relations that:

1. are not themselves bisimulations:;

2. can be automatically completed into bisimulations.

Idea, explained: if we had such a class then to prove that two processes are
bisimilar it would be enough to exhibit a relation in this class! that contains the

two processes.

1Hopefully, it is easier to find such relation than to find the candidate bisimulation directly.

Bisimulation up to structural congruence

A symmetric relation R is a bisimulation up-to = if whenever P 'R () and

P —“ P’ then there exists a process ()’ such that @) N ()’ and there exist
processes P” and ()" such that P = P" R Q" = Q.

Exercise: prove that if R is a bisimulation up to =, then = R = is a bisimulation.

Exercise: prove that for all P,Q it holds P || Q = Q || P.

Bisimulation up to non-input context

A symmetric relation R is a bisimulation up-to non-input context if whenever

¢ . ¢
P R Q and P — P’ then there exists a process ()’ such that) — Q'
and there exist a non-input context C|—| and processes P” and)" such that

P'=C[P"), Q' = C[Q"], and P" R Q".

Exercise: Prove that if ‘R is a bisimulation up to non-input context, then
{(CIP],C|Q]): PR Q and C[—] is a non-input context}

is a bisimulation up to structural congruence.

Exercise: Prove that !P || !P ~ !P (hint: show that the relation R =
{(!P || 'P,!P)} is a bisimulation up to non-input context).

A slippery ground...

It would be nice to be able to abstract from internal reduction steps, thus defining
(weak) bisimulation up to (weak) bisimulation.

But this proof method is not sound: 7.a.0 and 0 are (weakly) bisimilar up to
(weak) bisimulation, but they are not bisimilar!

Several solutions: almost-weak bisimulation, expansion, etc...

Some references

D. Sangiorgi, R. Milner, The problem of weak bisimulation up to, 1992

D. Sangiorgi, On the bisimulation proof method, 1994

Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction,
that is, the acts of sending a datum and receiving it coincide:

E.PHCL.Q—DPHQ.

In real-world distributed systems, sending a datum and receiving it are distinct
acts:
aP||aQ ...« . a||P|aQ. ..« . P|Q.

In an asynchronous world, the prefix . does not express temporal precedence.

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is O.

Intuition: an unguarded occurence of Z(y) can be thought of as a datum y in an
implicit communication medium tagged with .

Formally:
#(y) || «(2).P — P{¥.}.

We suppose that the communication medium has unbounded capacity and
preserves no ordering among output particles.

10

Asynchronous pi-calculus

Syntax:

P =0 | 2@).P | =y | P||P | wa)P | P

The definitions of free and bound names, of structural congruence =, and of the
reduction relation — are inherited from pi-calculus.

11

Examples

Sequentialization of output actions is still possible:
(vy,2)@(y) || 9(2) || 2(a) || R)-

Synchronous communication can be implemented by waiting for
acknoledgement:

[Z(y).P] = (vu)(@y,u) || u().P)

[z(v).Q] = z(v,w).(w() || Q) for w & @

Exercise: implement synchronous communication without relying on polyadic primitives.

an

12

Background: a recipe for a “natural” contextual equivalence

Say that P and @ are equivalent (in symbols: P ~ Q) if:

Preservation under contexts For all contexts C|—|, we have C[P] ~ C[Q)];

Preservation of observations If P | x then () || x, where P | x is defined as

P = (wi)(®(y).P' || P") or P = (vit)(x(u).P' || P") for x & ;

Preservation of reductions If P ~ () and P — P’ then there is a ()’ such that

Q —"Q and P ~ Q' .

13

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

e compare terms using only asynchronous contexts;

e restrict the observables to be co-names. To observe a process is to interact
with it by performing a complementary action and reporting it: in asynchronous
pi-calculus input actions cannot be observed.

14

A peculiarity of synchronous equivalences

The terms

are not reduction barbed congruent, but they are asynchronous reduction barbed
congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do
not influence the computation.

15

A proof method

Consider now the weak bisimilarity /4 built on top of the standard (early) LTS
for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, = is
an equivalence for asynchronous pi-calculus terms.

It holds ~;, C ~, that is the standard pi-calculus bisimilarity is a sound proof
technique for ~.

But
lx(2).7(2) %50 .

Question: can a labelled bisimilarity recover the natural contextual equivalence?

16

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage
with a context:

o if P "L, P’ then P can interact with the context — || z(u).beep, where
beep is activated if and only if the output action has been observed;

o if P NN P’ then in no way beep can be activated if and only if the input

action has been observed!

Solutions:
1. relax the matching condition for input actions in the bisimulation game;

2. modify the LTS so that it precisely identifies the interactions that a term can
have with its environment.

17

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.

Let asynchronous bisimulation ~, be the largest symmetric relation such that
whenever P =, () it holds:

1.if P -5 P and ¢ # x(y) then there exists)’ such that @ SN Q' and
P’ ~a Q/;

2. if P -0, P’ then there exists Q' such that Q || Z(y) = Q" and P’ ~, Q)".

Remark: P’ is the outcome of the interaction of P with the context — || Z(y).
Clause 2. allows () to interact with the same context, but does not force this
Interaction.

18

Honda, Tokoro - 1992

p 2, pog +y
(Vy)P (Vy)f<y> N P/
p Y z(y) P/ Q z(y) Q/
PllQ—P| Q
P25 P bn(a)N(Q) =10

x(u).P ——

P

W Py 0 20, Fy)

P> P yda

(vy)P — (vy)P’

W pr@ 2Ly ¢ n(Q)

PllQ—P|Q

PllQ— (vy)(P' Il Q)

P=P P —Q Q=Q

P2 Q

19

Honda, Tokoro explained

Ideas:

e modify the LTS so that it precisely identifies the interactions that a term can
have with its environment:

e rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of
HT LTS, and barbed congruence coincide.?

2ahem, modulo some technical details.

20

Properties of asynchronous bisimilarity in ACS style

e Bisimilarity is a congruence;

it is preserved also by input prefix, while it is not in the synchronous case;
e bisimilarity is an equivalence relation (transitivity is non-trivial);
e bisimilarity is sound with respect to reduction barbed congruence;

e bisimilarity is complete with respect to barbed congruence.’

3for this the calculus must be equipped with a matching operator.

Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:
P:u:=0 | aP | a| P||P | (vaP.

Reduction semantics:

P=P Q' =qQ
P —Q

a.Pl|la — P

where = is defined as:

Plle=Qll P (Pl QI R=P[(QI] R)
(va)P || Q= (va)(P || Q) if a & n(Q)

22

Background: LTS and weak bisimilarity for asynchronous CCS

PLpP Q% Q

a.P 25 P a0
PllQ— P | Q
P-4t p PP agf)
symmetric rules omitted.
P|lQ->P|Q (va)P — (va)P’

Definition: Asynchronous weak bisimilarity, denoted =, is the largest symmetric
relation such that whenever P =~ () and

e P 5. P’ ¢ € {r,a}, there exists ()’ such that) N Q' and P' ~ Q'
e P> P’ there exists Q' such that Q || @ = Q' and P' =~ Q'.

23

Sketch of the proof of transitivity of ~

Let R ={(P,R): P~ Q = R}. We show that R C =.

e Suppose that P R R because P ~ Q =~ R, and that P — P’.

/

The definition of & ensures that there exists Q' such that Q || @ = Q' and P' = Q’.

Since /5 is a congruence and Q = R, it holdsthat Q || @ = R || @.

A simple corollary of the defintion of the bisimilarity ensures that there exists R’ such that

R||a=— R and Q' = R'.
Then P’ R R’ by construction of R.

® [he other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

24

Sketch of the proof of completeness

We show that ~ C =.

e Suppose that P ~ Q and that P - P’

We must conclude that there exists Q' such that Q || @ = Q' and P’ ~ Q.
Since ~ is a congruence, it holds that P || @ >~ Q || @.

Since P = P’ it holds that P || @ — P’.

Since P || @ >~ Q || @, the definition of ~ ensures that there exists Q' such that Q || @ — Q'
and P’ ~ @Q’, as desired.

e The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a
process. The case P — P’ is straightforward because “there is nothing to observe”.

25

Some references

Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous
Communication. ECOOP 1991.

Kohei Honda, Mario Tokoro, On asynchronous communication semantics. Object-
Based Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.

Roberto Amadio, llaria Castellani, Davide Sangiorgi, On bisimulations for the
asynchronous pi-calculus. Theor. Comput. Sci. 195(2), 1998.

26

Distribution, action at distance, and mobility

The parallel composition operator of CCS and pi-calculus does not specify whether
the concurrent threads are running on the same machine, or on different machines
connected by a network.

Some phenomena typical of distributed systems require a finer model, that
explicitly keeps track of the spatial distribution of the processes.

We will briefly sketch two models that have been proposed: DP/ (Hennessy and
Riely, 1998) and Mobile Ambients (Cardelli and Gordon, 1998).

The aim of this section is to get a glimpse of more complex process languages, and to rediscover
the idea of “transitions in an LTS characterise the interactions a term can have with a context”
in this setting.

27

DPI, design choices

e add explicit locations to pi-calculus processes: /| P|;
e locations are identified by their name: /[P] || ¢[Q] = /[P || Q];

e communication is local to a location:

([z(y).P] || tla(w).Q] — ¢[P] || (LQ{%u}]

e add explicit migration: /[goto k.P] — k[P].

We also include the restriction and match operators, subject to the usual pi-calculus semantics.

28

Behavioural equivalence for DPI

Again, we apply the standard recipe:

e define the suitable contexts:

Cl-] == — | Cl-]||aPr] | wn)Cl-].

e define the observation:

M | 2@ iff P = (vii)(([x(u).P'] || P") fora,f &7 .

Can we characterise this equivalence with a labelled bisimulation?

29

Labelled bisimulation for DPI

P P P=wn)(l[z(u).P] || P") z,Lgn
P P P 2% wa) (e[P'{}] || P”)

P=wi)(t[Z)Pl | P wy lgi

P wR) (L P'] | PY)

P=wn)(l[Zy).P']|| P') =z f¢gn wycn

z((y))Ql

P (v \y)(L[P'] || P7)

30

Labelled bisimulation for DPI, ctd.

The standard bisimulation on top of the LTS below coincides with reduction
barbed congruence.

Remark: the LTS is written in an wnconventional style, which precisely
characterises the interactions a term can have with a context.

Questions:

1- every label should correspond to a (minimal) interacting context: can you spell
out these contexts?

2- why there are no explicit labels for the "goto” action?

31

Mobile Ambients, designh choices

Objective: build a process language on top of the concepts of barriers
(administrative domains, firewalls, ...) and of barrier crossing.

A graphical representation of the syntax and of the reduction semantics of Mobile Ambients can

be found here:

http://research.microsoft.com/Users/luca/Slides/
2000-11-10%20Wide%20Area’20Computation’20(Valladolid) . pdf

32

Mobile Ambients syntax (in 1SO 10646)

Processes:

P,Q,R

Capabilities:
0 C = in.n
P || Py out_n
(vn)P open_n
n|P]
C.P

|P

33

Mobile Ambients: interaction

e |Locations migrate under the control of the processes located at their inside:

nlinom.P || Q] || m[R] — m[n[P || Q] || R]
m[nlout-m.P || Q] || R] — n[P || Q] || m[R]

e a location may be opened:

open_n.P || n[Q] — P || Q

34

Hint about an LTS for Mobile Ambients

Consider the term M = (vm)(k[in-n.P || Q] || R) where k & m. It can
interact with the context n[T] || —, where T is an arbitrary process, yielding
O = (vm)(n[T || k[P || Q]] || R). This interaction can be captured with a

.. k.enter_n
transition M > 0.

Remark that, contrarily to what happens in CCS and pi-calculus, a bit of the
Iinteracting context is still visible in the outcome!

Along these lines (asynchrony is needed too!) it is possible to characterise
reduction barbed congruence using a labelled bisimilarity.

35

References

James Riely, Matthew Hennessy: Distributed Pprocesses and location failures.
Theoretical Computer Science, 2001. An extended abstract appeard in I[CALP 97.

Luca Cardelli, Andrew Gordon: Mobile Ambients. Theoretical Computer Science,
2000. An extended abstract appeared in FOSSACS 1998.

Massimo Merro, myself: A behavioral theory for Mobile Ambients. Journal of
ACM, 2005.

36

