
Semantics, languages and algorithms
for multicore programming

Luc MarangetAlbert Cohen Francesco Zappa Nardelli

1Friday, 13 January 2012

Concurrency, in theory

2Friday, 13 January 2012

Concurrency, in theory

Concurrency theory is fundamental
Many of the concepts and techniques developed in 25 years of
study of concurrency theory are fundamental.

You will reuse them in your daily research.

Just some examples:

• labelled transition systems;

• simulation and bisimulation;

• contextual equivalences.

2Friday, 13 January 2012

Concurrency, in practice

excerpt from Linux spinlock.c

3Friday, 13 January 2012

Concurrency, in practice

excerpt from Linux spinlock.c

excerpt from
www.javaconcurrencyinpractice.com

3Friday, 13 January 2012

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Concurrency, in practice

excerpt from Linux spinlock.c

excerpt from
www.javaconcurrencyinpractice.com

excerpt from WebKit

3Friday, 13 January 2012

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Concurrency, in practice

excerpt from Linux spinlock.c

excerpt from
www.javaconcurrencyinpractice.com

excerpt from WebKit

in practice
sequential code, interaction via shared memory, some OS calls.

Libraries may provide some abstractions (e.g. message passing).
However, somebody must still implement these libraries. And...

Programming is hard:
 subtle algorithms, awful corner cases.

Testing is hard:
 some behaviours are observed rarely and difficult to reproduce.

Warm-up: let's implement a shared stack.

3Friday, 13 January 2012

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Setup

A program is composed by threads that communicate by writing and reading in
a shared memory. No assumptions about the relative speed of the threads.

In this example we will use a mild variant of the C programming language:

• local variables: x, y, … (allocated on the stack, local to each thread)

• global variables: Top, H, … (allocated on the heap, shared between threads)

• data structures: arrays H[i], records n = t->tl, …

• an atomic compare-and-swap operation (e.g. CMPXCHG on x86):

 bool CAS (value_t *addr, value_t exp, value_t new) {
 atomic {
 if (*addr == exp) then { *addr = new; return true; }
 else return false;
 }}

4Friday, 13 January 2012

We implement a stack using a list living in the heap:

• each entry of the stack is a record of two fields:

 typedef struct entry { value hd; entry *tl } entry

• the top of the stack is pointed by Top.

A stack	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

5Friday, 13 January 2012

A sequential stack: demo	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

6Friday, 13 January 2012

A sequential stack: pop ()	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

t

7Friday, 13 January 2012

A sequential stack: pop ()	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

t

8Friday, 13 January 2012

A sequential stack: pop ()	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

t

9Friday, 13 January 2012

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

10Friday, 13 January 2012

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

11Friday, 13 January 2012

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

12Friday, 13 January 2012

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

13Friday, 13 January 2012

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

14Friday, 13 January 2012

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t

15Friday, 13 January 2012

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

16Friday, 13 January 2012

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

17Friday, 13 January 2012

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

...the two threads might pop the same entry!

18Friday, 13 January 2012

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

19Friday, 13 January 2012

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Two concurrent pop() now work fine...

1: t

20Friday, 13 January 2012

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Two concurrent pop() now work fine...

1: t

21Friday, 13 January 2012

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Two concurrent pop() now work fine...

1: t 1: n

The CAS of Th. 1 fails.

22Friday, 13 January 2012

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 starts popping...

1: t

23Friday, 13 January 2012

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 starts popping...

1: t
1: n

24Friday, 13 January 2012

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pops...

1: t

2:

1: n

25Friday, 13 January 2012

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pops again...

1: t

2:

1: n

26Friday, 13 January 2012

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pushes a new node...

1: t

2:

1: n

27Friday, 13 January 2012

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pushes the old head of the stack...

1: t
1: n

28Friday, 13 January 2012

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 corrupts the stack...

29Friday, 13 January 2012

The hazard pointers methodology

Michael adds to the previous algorithm a global array H of hazard pointers:

• thread i alone is allowed to write to element H[i] of the array;

• any thread can read any entry of H.

The algorithm is then modified:

• before popping a cell, a thread puts its address into its own element of H.
This entry is cleared only if CAS succeeds or the stack is empty;

• before pushing a cell, a thread checks to see whether it is pointed to from any
element of H. If it is, push is delayed.

30Friday, 13 January 2012

Michael’s algorithm, simplified

pop () {
 while (true) {
 atomic { t = Top;
 H[tid] = t; };
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

31Friday, 13 January 2012

Michael’s algorithm, simplified

pop () {
 while (true) {
 atomic { t = Top;
 H[tid] = t; };
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 cannot push the old
head, because Th 1 has an
hazard pointer on it...

1: t

2:

1: n

H[1]

32Friday, 13 January 2012

Key properties of Michael’s simplified algorithm

• A node can be added to the hazard array only if it is reachable through the
stack;

• a node that has been popped is not reachable through the stack;

• a node that is unreachable in the stack and that is in the hazard array cannot
be added to the stack;

• while a node is reachable and in the hazard array, it has a constant tail.

These are a good example of the properties we might
want to state and prove about a concurrent algorithm.

33Friday, 13 January 2012

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 copies Top...

1: t

34Friday, 13 January 2012

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pops twice, and
pushes a new node...

1: t

35Friday, 13 January 2012

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top
Th 2 starts pushing the old
head, and is halfway in the
for loop...

1: t

36Friday, 13 January 2012

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

TopTh 1 sets its hazard
pointer… but Th 2 might
not see the hazard pointer
of Th 1!

1: t

H[1]

1: n

37Friday, 13 January 2012

Michael shared stack

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 H[tid] = t;
 if (t != Top) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Trust me: if we validate t against the
Top pointer before reading t->tl, we
get a correct algorithm.

38Friday, 13 January 2012

Reaction 1.

That algorithm is insane… I will never
use it in my everyday programming.

39Friday, 13 January 2012

Reaction 1.

That algorithm is insane… I will never
use it in my everyday programming.

Yes, you will! Michael algorithms
are part of java.util.concurrent.

39Friday, 13 January 2012

Reaction 1.

That algorithm is insane… I will never
use it in my everyday programming.

Yes, you will! Michael algorithms
are part of java.util.concurrent.

...and ignoring parallelism is not
an option these days...

39Friday, 13 January 2012

Reaction 2.

How can we reason about this code?

40Friday, 13 January 2012

Reaction 2.

How can we reason about this code?

The course 2.36.1 gives some hints.

40Friday, 13 January 2012

Reaction 3.

What does the hardware execute?

Why C and shared memory?

How to define the semantics of a
concurrent programming language?

Will the compiler introduce errors?

Tell us about the state of the art!

41Friday, 13 January 2012

Reaction 3.

What does the hardware execute?

Why C and shared memory?

How to define the semantics of a
concurrent programming language?

Will the compiler introduce errors?

Tell us about the state of the art!

Welcome to 2.37.1

1. Relaxed-memory concurrency,
 from hardware to programming languages

2. Runtime algorithms
 and compilation of parallel programming languages

3. Modern concurrent algorithms

41Friday, 13 January 2012

Part 1.
Shared memory: an elusive abstraction

http://moscova.inria.fr/~zappa/projects/weakmemory

Based on work done by or with

 Peter Sewell, Jaroslav Ševčík, Susmit Sarkar, Tom Ridge, Scott Owens,
 Viktor Vafeiadis, Magnus O. Myreen, Kayvan Memarian, Luc Maranget,
 Pankaj Pawan, Thomas Braibant, Mark Batty, Jade Alglave.

42Friday, 13 January 2012

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

The golden age, 1945 - 1972

Memory = Array of Values

43Friday, 13 January 2012

Lamport, 1979.

During the golden age

Multiprocessors had a sequentially consistent shared memory:

...the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program...

44Friday, 13 January 2012

Lamport, 1979.

During the golden age

Multiprocessors had a sequentially consistent shared memory:

...the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program...

Taken for granted by almost all

• concurrency theorists

• program logics

• concurrent verification tools

• programmers

… even today!

44Friday, 13 January 2012

The first shocking example

Consider the following x86 assembler code.

 Initial shared memory values: [x]=0 [y]=0

 Per-processor registers: EAX EBX

Can you guess the final register values: EAX = ? EBX = ?

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

45Friday, 13 January 2012

The first shocking example

Consider the following x86 assembler code.

 Initial shared memory values: [x]=0 [y]=0

 Per-processor registers: EAX EBX

Can you guess the final register values: EAX = 1 EBX = 1

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

46Friday, 13 January 2012

Consider the following x86 assembler code:

 Initial shared memory values: [x]=0 [y]=0

 Per-processor registers: EAX EBX

Can you guess the final register values: EAX = 1 EBX = 1

The first shocking example

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

47Friday, 13 January 2012

Consider the following x86 assembler code:

 Initial shared memory values: [x]=0 [y]=0

 Per-processor registers: EAX EBX

Can you guess the final register values: EAX = 1 EBX = 1

The first shocking example

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

48Friday, 13 January 2012

Consider the following x86 assembler code:

 Initial shared memory values: [x]=0 [y]=0

 Per-processor registers: EAX EBX

Can you guess the final register values: EAX = 1 EBX = 1

The first shocking example

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

49Friday, 13 January 2012

Consider the following x86 assembler code:

 Initial shared memory values: [x]=0 [y]=0

 Per-processor registers: EAX EBX

Can you guess the final register values: EAX = 0 EBX = 1

The first shocking example

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

50Friday, 13 January 2012

Consider the following x86 assembler code:

 Initial shared memory values: [x]=0 [y]=0

 Per-processor registers: EAX EBX

Can you guess the final register values: EAX = 1 EBX = 0

The first shocking example

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

51Friday, 13 January 2012

In an ideal world, the possible outcomes would be:

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [y]

The first shocking example

• EAX : 1, EBX : 1
• EAX : 0, EBX : 1
• EAX : 1, EAX : 0

52Friday, 13 January 2012

In an ideal world, the possible outcomes would be:

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [y]

The first shocking example

• EAX : 1, EBX : 1
• EAX : 0, EBX : 1
• EAX : 1, EAX : 0

Let's see...

52Friday, 13 January 2012

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [y]

The first shocking example

In an ideal world, the possible outcomes would be:

• EAX : 1, EBX : 1
• EAX : 0, EBX : 1
• EAX : 1, EAX : 0

We can observe

EAX = EBX = 0

as well

53Friday, 13 January 2012

According to most programmers

Multiprocessors are sequentially consistent: accesses by multiple
threads to a shared memory occur in a global-time linear order.

Multiprocessors (and compilers) incorporate many

performance optimisations

(local store buffers, shadowing register files, hierarchies of caches, …)

These are:

• unobservable by single-threaded programs;

• sometimes observable by concurrent code.

FALSE

54Friday, 13 January 2012

According to most programmers

Multiprocessors are sequentially consistent: accesses by multiple
threads to a shared memory occur in a global-time linear order.

Multiprocessors (and compilers) incorporate many

performance optimisations

(local store buffers, shadowing register files, hierarchies of caches, …)

These are:

• unobservable by single-threaded programs;

• sometimes observable by concurrent code.

FALSE
Upshot:

only a relaxed (or weakly consistent)
view of the memory.

54Friday, 13 January 2012

Not new

Multiprocessors since 1964 (Univac 1108A)

Relaxed Memory since 1972 (IBM System 370/158MP)

Eclipsed for a long time (except in high-end) by advances in performance:

- transistor counts (continuing)

- clock speed (hit power dissipation limit)

- ILP (hit smartness limit?)

Mass-market multiprocessing, since 2005.

Programming multiprocessors no longer just for
specialists.

55Friday, 13 January 2012

But it's hard!

1. Real memory models are subtle

2. Real memory models differ between architectures

3. Real memory models differ between languages

Almost none of the last 40 years' work on verification of concurrent
code deals with relaxed memory (new trend in the last few years).

Much of the research on relaxed models does not address real
processors and languages (new trend in the last few years).

56Friday, 13 January 2012

But it's hard!

1. Real memory models are subtle

2. Real memory models differ between architectures

3. Real memory models differ between languages

Almost none of the last 40 years' work on verification of concurrent
code deals with relaxed memory (new trend in the last few years).

Much of the research on relaxed models does not address real
processors and languages (new trend in the last few years).

Industrial processors and language specs
are often flawed

We've looked at the specs of x86, Power, ARM, Java, and C++

They all have problems

56Friday, 13 January 2012

These lectures

Hardware models

 1) why are industrial specs so often flawed?

 focus on x86, with a glimpse of Power/ARM

 2) usable models: x86-TSO, Power

Programming language models

 1) defining the semantics of a concurrent programming language

 2) data-race freedom

 3) soundness of compiler optimisations

57Friday, 13 January 2012

Uses

1. how to code low-level concurrent datastructures

2. how to build concurrency testing and verification tools

3. how to specify and test multiprocessors

4. how to design and express high-level language definitions

5. to discover some ugly monsters still lurking
 in your multiprocessor / your favorite
 programming language (despite a lot of efforts)

58Friday, 13 January 2012

Hardware models

59Friday, 13 January 2012

Architectures

Hardware manufacturers document architectures:

• loose specifications

• claimed to cover a wide range of past and future processor
implementations.

Architectures should:

• reveal enough for effective programming;

• without unduly constraining future processor design.

Examples: Intel 64 and IA-32 Architectures SDM, AMD64 Architecture Programmer’s
Manual, Power ISA specification, ARM Architecture Reference Manual, ...

60Friday, 13 January 2012

61Friday, 13 January 2012

In practice

Architectures described by informal prose:

As we shall see, such descriptions are:

1) vague; 2) incomplete; 3) unsound.

Fundamental problem: prose specifications cannot be used to test
programs or to test processor implementations.

In a multiprocessor system, maintenance of cache
consistency may, in rare circumstances, require intervention
by system software.

(Intel SDM, november 2006, vol3a, 10-5)

62Friday, 13 January 2012

Era of Vagueness

A model called Processor Ordering, informal prose.

Example: Linux kernel mailing list, 20 nov. - 7 déc. 1999 (143 posts).

A one-instruction programming question, a microarchitecural debate!

Keywords: speculation, ordering, causality, retire, cache...

Intel 64/IA32 and AMD64 - before Aug. 2007

63Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They

will crash, eventually.

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They

will crash, eventually.
According to the Pentium Processor Family Developers

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory

reads to be reordered ahead of buffered writes in most
situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at

the pins, reads (cache miss) and writes appear in-order."

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They

will crash, eventually.
According to the Pentium Processor Family Developers

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory

reads to be reordered ahead of buffered writes in most
situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The
only enhancement in the PentiumPro

processor is the added support for
speculative reads and store-buffer

forwarding."

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They

will crash, eventually.
According to the Pentium Processor Family Developers

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory

reads to be reordered ahead of buffered writes in most
situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The
only enhancement in the PentiumPro

processor is the added support for
speculative reads and store-buffer

forwarding."

I have seen the behavior Linus describes on a
hardware analyzer, BUT ONLY ON

SYSTEMS THAT WERE PPRO AND
ABOVE. I guess the BSD people must still be
on older Pentium hardware and that's why
they don't know this can bite in some cases.

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They

will crash, eventually.
According to the Pentium Processor Family Developers

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory

reads to be reordered ahead of buffered writes in most
situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The
only enhancement in the PentiumPro

processor is the added support for
speculative reads and store-buffer

forwarding."

I have seen the behavior Linus describes on a
hardware analyzer, BUT ONLY ON

SYSTEMS THAT WERE PPRO AND
ABOVE. I guess the BSD people must still be
on older Pentium hardware and that's why
they don't know this can bite in some cases.

Intel guy

It will always return 0. You don't need
"spin_unlock()" to be serializing.

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They

will crash, eventually.
According to the Pentium Processor Family Developers

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory

reads to be reordered ahead of buffered writes in most
situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The
only enhancement in the PentiumPro

processor is the added support for
speculative reads and store-buffer

forwarding."

I have seen the behavior Linus describes on a
hardware analyzer, BUT ONLY ON

SYSTEMS THAT WERE PPRO AND
ABOVE. I guess the BSD people must still be
on older Pentium hardware and that's why
they don't know this can bite in some cases.

Intel guy

It will always return 0. You don't need
"spin_unlock()" to be serializing.

I feel comfortable again.

Thanks, guys, we'll be that much faster
due to this..

64Friday, 13 January 2012

1. spin_unlock() Optimization On Intel
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo
Molnar
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void)  {

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;
mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;
}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;  spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

spin_unlock();

spin_lock();

a = 1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a = 0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.

The only thing you need is to make sure there is a store in "spin_unlock()",
and that is kind of true by the fact that you're changing something to be
observable on other processors.

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

We can shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0"
asm code, to 1 tick for a simple "movl

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test,
making the optimization very valuable.
The same optimization cropped up in

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They

will crash, eventually.
According to the Pentium Processor Family Developers

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory

reads to be reordered ahead of buffered writes in most
situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The
only enhancement in the PentiumPro

processor is the added support for
speculative reads and store-buffer

forwarding."

I have seen the behavior Linus describes on a
hardware analyzer, BUT ONLY ON

SYSTEMS THAT WERE PPRO AND
ABOVE. I guess the BSD people must still be
on older Pentium hardware and that's why
they don't know this can bite in some cases.

Intel guy

It will always return 0. You don't need
"spin_unlock()" to be serializing.

I feel comfortable again.

Thanks, guys, we'll be that much faster
due to this..

"You report that Linus was convinced to do the spinlock optimization on
Intel, but apparently someone has since changed his mind back. See <asm-
i386/spinlock.h> from 2.3.30pre5 and above:

/* Sadly, some early PPro chips require the locked

* access, otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

64Friday, 13 January 2012

Intel 64/IA32 and AMD64 - Aug. 2007 / Oct. 2008

Intel publishes a white paper, defining 8 informal-prose principles, e.g.

supported by 10 litmus test (illustrating allowed or forbidden
behaviours), e.g.:

P1. Loads are not reordered with older loads.
P2. Stores are not reordered with older stores.

Thread 0 Thread 1

MOV [x] ← 1 MOV EAX ← [y] (1)

MOV [y] ← 1 MOV EBX ← [x] (0)

Forbidden final state: EAX = 1 ⋀ EBX = 0Forbidden final state: EAX = 1 ⋀ EBX = 0

65Friday, 13 January 2012

P3. Loads may be reordered with older stores to different locations
 but not with older stores to the same location.

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] (0) MOV EBX ← [x] (0)

Allowed final state: 0:EAX = 0 ⋀ 1:EBX = 0Allowed final state: 0:EAX = 0 ⋀ 1:EBX = 0

66Friday, 13 January 2012

P3. Loads may be reordered with older stores to different locations
 but not with older stores to the same location.

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] (0) MOV EBX ← [x] (0)

Allowed final state: 0:EAX = 0 ⋀ 1:EBX = 0Allowed final state: 0:EAX = 0 ⋀ 1:EBX = 0

66Friday, 13 January 2012

Litmus test 2.4: intra-processor forwarding is allowed

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [x] (1) MOV ECX ← [y] (1)
MOV EBX ← [y] (0) MOV EDX ← [x] (0)

Allowed final state: 0:EAX = 1 ⋀ 0:EBX = 0 ⋀
 1:ECX = 1 ⋀ 1:EDX = 1
Allowed final state: 0:EAX = 1 ⋀ 0:EBX = 0 ⋀
 1:ECX = 1 ⋀ 1:EDX = 1

67Friday, 13 January 2012

Litmus test 2.4: intra-processor forwarding is allowed

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [x] (1) MOV ECX ← [y] (1)
MOV EBX ← [y] (0) MOV EDX ← [x] (0)

Allowed final state: 0:EAX = 1 ⋀ 0:EBX = 0 ⋀
 1:ECX = 1 ⋀ 1:EDX = 1
Allowed final state: 0:EAX = 1 ⋀ 0:EBX = 0 ⋀
 1:ECX = 1 ⋀ 1:EDX = 1

67Friday, 13 January 2012

Thread 0 Thread 1 Thread 2 Thread 3

MOV [x] ← 1 MOV [y] ← 1 MOV EAX ← [x] MOV ECX ← [y]

MOV EBX ← [y] MOV EDX ← [x]

Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0
(0)

(1) (1)

(0)

68Friday, 13 January 2012

Thread 0 Thread 1 Thread 2 Thread 3

MOV [x] ← 1 MOV [y] ← 1 MOV EAX ← [x] MOV ECX ← [y]

MOV EBX ← [y] MOV EDX ← [x]

Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0Final state: 2:EAX = 1 ⋀ 2:EBX = 0 ⋀ 3:ECX = 1 ⋀ 3:EDX = 0
(0)

(1) (1)

(0)

Microarchitecturally plausible?

Yes, with e.g. shared store buffers.

68Friday, 13 January 2012

P1-P4: … may be reordered with …

P5: Intel 64 memory ordering ensures transitive visibility of stores —
i.e. stores that are causally related appear to execute in an order
consistent with the causal relation.

Thread 0 Thread 1 Thread 2

MOV [x] ← 1 MOV EAX ← [x] MOV EBX ← [y] (1)

MOV [y] ← 1 MOV ECX ← [x] (0)

Forbidden final state: 1:EAX = 1 ⋀ 2:EBX = 1 ⋀ 2:ECX = 0Forbidden final state: 1:EAX = 1 ⋀ 2:EBX = 1 ⋀ 2:ECX = 0Forbidden final state: 1:EAX = 1 ⋀ 2:EBX = 1 ⋀ 2:ECX = 0

Ambiguity

69Friday, 13 January 2012

P1-P4: … may be reordered with …

P5: Intel 64 memory ordering ensures transitive visibility of stores —
i.e. stores that are causally related appear to execute in an order
consistent with the causal relation.

Thread 0 Thread 1 Thread 2

MOV [x] ← 1 MOV EAX ← [x] MOV EBX ← [y] (1)

MOV [y] ← 1 MOV ECX ← [x] (0)

Forbidden final state: 1:EAX = 1 ⋀ 2:EBX = 1 ⋀ 2:ECX = 0Forbidden final state: 1:EAX = 1 ⋀ 2:EBX = 1 ⋀ 2:ECX = 0Forbidden final state: 1:EAX = 1 ⋀ 2:EBX = 1 ⋀ 2:ECX = 0

Ambiguity

Ambiguity:

when are two stores casually related?

69Friday, 13 January 2012

Unsoundness

Example from Paul Loewenstein:

Observed on real hardware, but not allowed by the ‘principles’:

•“Stores are not reordered with other stores”

•“Stores to the same location have a total order”

Thread 0 Thread 1

[x] ← 1

EAX ← [x] (1)

EBX ← [y] (0)

[y] ← 2

[x] ← 2

0:EAX = 1 ⋀ 0:EBX = 0 ⋀ x = 10:EAX = 1 ⋀ 0:EBX = 0 ⋀ x = 1

70Friday, 13 January 2012

Unsoundness

Example from Paul Loewenstein:

Observed on real hardware, but not allowed by the ‘principles’:

•“Stores are not reordered with other stores”

•“Stores to the same location have a total order”

Thread 0 Thread 1

[x] ← 1

EAX ← [x] (1)

EBX ← [y] (0)

[y] ← 2

[x] ← 2

0:EAX = 1 ⋀ 0:EBX = 0 ⋀ x = 10:EAX = 1 ⋀ 0:EBX = 0 ⋀ x = 1

The Intel White Paper specification

is unsound

(and our POPL x86-CC paper too)

70Friday, 13 January 2012

Intel 64/IA32 and AMD64, Nov. 2008 - now

SDM rev 29-31.

•Not unsound in the previous sense

•Explicitly exclude IRIW, so not weak in that sense. New principle:

But… still ambiguous, and the view by those processors is left entirely
unspecified!

Any two stores are seen in a consistent order by
processors other than those performing the stores.

71Friday, 13 January 2012

Intel 64/IA32 and AMD64, Nov. 2008 - now

SDM rev 29-31.

•Not unsound in the previous sense

•Explicitly exclude IRIW, so not weak in that sense. New principle:

But… still ambiguous, and the view by those processors is left entirely
unspecified!

Any two stores are seen in a consistent order by
processors other than those performing the stores.

Thread 0 Thread 1

MOV [x] ← 1 MOV [x] ← 2
MOV EAX ← [x] (2) MOV EBX ← [x] (1)

0:EAX = 2 ⋀ 1:EBX = 10:EAX = 2 ⋀ 1:EBX = 1
71Friday, 13 January 2012

Power ISA 2.06 and ARM v7

Key concept: actions being performed.

Used to compute dependencies and to define the semantics of
barriers.

A load by a processor (P1) is performed with respect to any
processor (P2) when the value to be returned by the load
can no longer be changed by a store by P2.

72Friday, 13 January 2012

Power ISA 2.06 and ARM v7

Key concept: actions being performed.

Used to compute dependencies and to define the semantics of
barriers.

A load by a processor (P1) is performed with respect to any
processor (P2) when the value to be returned by the load
can no longer be changed by a store by P2.

The definition of performed refers to an hypothetical store by P2.

A memory model should define if a particular execution is allowed.
It is is awkward to make a definition that explicitly quantifies over all
hypothetical variant executions.

72Friday, 13 January 2012

Power ISA 2.06 and ARM v7

Key concept: actions being performed.

Used to compute dependencies and to define the semantics of
barriers.

A load by a processor (P1) is performed with respect to any
processor (P2) when the value to be returned by the load
can no longer be changed by a store by P2.

The definition of performed refers to an hypothetical store by P2.

A memory model should define if a particular execution is allowed.
It is is awkward to make a definition that explicitly quantifies over all
hypothetical variant executions.

— Anonymous Processor Architect, 2011

"all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or
reason with — not even the people who wrote it"

72Friday, 13 January 2012

Why all these problems?

Recall that vendor architectures are:

• loose specifications

• claimed to cover a wide range of past and future processor
implementations.

Architectures should:

• reveal enough for effective programming;

• without unduly constraining future processor design.

73Friday, 13 January 2012

Why all these problems?

Recall that vendor architectures are:

• loose specifications

• claimed to cover a wide range of past and future processor
implementations.

Architectures should:

• reveal enough for effective programming;

• without unduly constraining future processor design.

There is a big tension between these,
with internal politics and inertia.

Compounded by the informal-prose specification style.

73Friday, 13 January 2012

Hardware models:
 inventing a usable abstraction for x86

74Friday, 13 January 2012

Requirements

• Unambiguous

• Sound w.r.t. experience

• Easy to understand

• Consistent with what we know of vendor intentions

• Consistent with expert-programmer reasoning

Key facts for x86

• Store buffering (with forwarding) is observable

• IRIW is not observable and forbidden by recent docs

• Various other reorderings are not observable and are forbidden

These suggests that x86 is, in practice, like Sparc TSO.

75Friday, 13 January 2012

Instructions and events

Initially [x] = 0.

Are we guaranteed that [x] = 2 at the end of the execution?

Thread 0 Thread 1

INC [x] INC [x]

76Friday, 13 January 2012

Instructions and events

Initially [x] = 0.

Are we guaranteed that [x] = 2 at the end of the execution?

Thread 0 Thread 1

INC [x] INC [x]

No: [x] = 1 is possible.

The instruction INC [x] is composed by two atomic events:

•read the content of the memory location [x];

•write the new content of the memory location [x].

76Friday, 13 January 2012

Locked instructions

Thread 0 Thread 1

INC [x] INC [x]
[x] = 1 is possible

Thread 0 Thread 1

Lock;INC [x] Lock;INC [x]
[x] = 1 is forbidden

Also, Lock's ADD, SUB, XCHG, etc., and CMPXCHG

77Friday, 13 January 2012

x86-TSO abstract machine

1. Separate instruction semantics and memory model

2. The memory model is defined over events rather than instructions

3. Define the memory model in two (provably equivalent) styles:

• an abstract machine (or operational model)

• an axiomatic model

78Friday, 13 January 2012

x86-TSO abstract machine

79Friday, 13 January 2012

x86-TSO abstract machine

Shared memory
maps addresses to values

79Friday, 13 January 2012

x86-TSO abstract machine

Shared memory
maps addresses to valuesa Store-Buffer per thread

79Friday, 13 January 2012

x86-TSO abstract machine

Shared memory
maps addresses to valuesa Store-Buffer per thread

a Global Lock
to indicate when a thread has
exclusive access to memory

79Friday, 13 January 2012

x86-TSO abstract machine

Shared memory
maps addresses to valuesa Store-Buffer per thread

a Global Lock
to indicate when a thread has
exclusive access to memory

• The store buffers are FIFO. A reading thread must read its most
recent buffered write, if there is one, to that address; otherwise
reads are satisfied from shared memory.

• To execute a LOCK’d instruction, a thread must first obtain the
global lock. At the end of the instruction, it flushes its store buffer
and relinquishes the lock. While the lock is held by one thread, no
other thread can read.

• A buffered write from a thread can propagate to the shared
memory at any time except when some other thread holds the
lock.

80Friday, 13 January 2012

The not-so shocking first example

x : 0 y : 0

EAX : 32 EBX : 47

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

81Friday, 13 January 2012

The not-so shocking first example

x : 0 y : 0

EAX : 32 EBX : 47

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

x:1

82Friday, 13 January 2012

The not-so shocking first example

x : 0 y : 0

EAX : 32 EBX : 47

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

x:1 y:1

83Friday, 13 January 2012

The not-so shocking first example

x : 0 y : 0

EAX : 0 EBX : 47

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

x:1

y:1

84Friday, 13 January 2012

The not-so shocking first example

x : 0 y : 0

EAX : 0 EBX : 0

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

x:1

y:1

85Friday, 13 January 2012

The not-so shocking first example

x : 1 y : 0

EAX : 0 EBX : 0

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

y:1

86Friday, 13 January 2012

The not-so shocking first example

x : 1 y : 1

EAX : 0 EBX : 0

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

87Friday, 13 January 2012

The not-so shocking first example

x : 1 y : 1

EAX : 0 EBX : 0

[x] ← 1

EAX ← [y]

[y] ← 1

EBX ← [x]

88Friday, 13 January 2012

Linux Spinlock Optimisation

Sample properties:

1. only one thread can acquire the spinlock at a time;

2. all writes performed inside a critical section must have been propagated
to main memory before another thread can acquire the spinlock.

89Friday, 13 January 2012

NB: this is an abstract machine

A tool to specify exactly and only the programmer-visible behaviour, not
a description of the implementation internals.

Force: of the the internal optimizations of processors, only per-thread
FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic unbuffering,
arbitrary interleaving

≠h

⊇
be

90Friday, 13 January 2012

Hardware models:
 inventing a usable abstraction for Power/ARM

Disclaimer:

 1. ARM MM is analogous to Power MM… all this is your (next) phone!

 2. The model I will present is (as far as we know) accurate for ARM if
barriers weaker than DMB are not used.

91Friday, 13 January 2012

Power: much more relaxed than x86

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

92Friday, 13 January 2012

Power: much more relaxed than x86

Forbidden on SC and x86-TSO

Allowed and observed on Power

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

92Friday, 13 January 2012

Power: much more relaxed than x86

1. the two writes are performed in opposite order

2. the two reads are perfomed in opposite order

3. propagation of writes ignores order in which they are presented

Three possible reasons (at least) for y = 1 and x = 0:

reordering store buffers

interconnects partitioned by address (cache lines)

load reorder buffers / speculation

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

93Friday, 13 January 2012

Power: much more relaxed than x86

1. the two writes are performed in opposite order

2. the two reads are perfomed in opposite order

3. propagation of writes ignores order in which they are presented

Three possible reasons (at least) for y = 1 and x = 0:

reordering store buffers

interconnects partitioned by address (cache lines)

load reorder buffers / speculation

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

Power has all three!

93Friday, 13 January 2012

The model overall structure

Some aspects are thread-only, some storage-only, some both.

Threads and storage subsystem are abstract state machines.

Speculative execution in Threads; topology-independent Storage.

Storage Subsystem

Thread Thread…

Read request/Write announce
Barrier ack

Write request
Barrier request

Much more complicated than x86-TSO.
Are you ready?

94Friday, 13 January 2012

Each thread loads its code, instructions instances are initially marked in-flight.

In-flight instructions can be committed, not necessarily in program order.

When a branch is committed, the un-taken alternatives are discarded.

Instructions that follow an uncommitted branch cannot be committed.

In-flight instructions can be processed even before being committed (e.g. to
speculate reads from memory, perform computation, ...).

Thread

95Friday, 13 January 2012

The storage keeps (among other things):

1. for each thread, a list of the events propagated to the thread.

When receiving a write request, the storage adds the write event to

 the list of the events propagated to the thread who issued the request.

The storage can propagate an observed event to a thread list at any time
 (unless barriers / coherence /... conditions).

Threads can commit writes at any time
 (unless dependency / synch / pending /… conditions).

Storage Subsystem

Thread Thread…

Write announce
Barrier ack

Write request
Barrier request

Storage

96Friday, 13 January 2012

The storage keeps (among other things):

1. for each thread, a list of the events propagated to the thread.

When receiving a write request, the storage adds the write event to

 the list of the events propagated to the thread who issued the request.

The storage can propagate an observed event to a thread list at any time
 (unless barriers / coherence /... conditions).

Threads can commit writes at any time
(unless dependency / synch / pending /… conditions).

Storage Subsystem

Thread Thread…

Write announce
Barrier ack

Write request
Barrier request

Storage

Simulation: 1. write_propagation

Thread 0 Thread 1 Thread 2

x = 1 x = 2

y = 1

97Friday, 13 January 2012

The storage keeps: ...

2. for each location, a partial order of coherence commitments

Idea 1: at the end of the execution, writes to each location are totally ordered.

Idea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: if a thread executes x=1 and then x=2, another thread cannot first

read 2 and then 1.

Storage

Storage Subsystem

Thread Thread…

Write announce
Barrier ack

Write request
Barrier request

98Friday, 13 January 2012

The storage keeps: ...

2. for each location, a partial order of coherence commitments

Idea 1: at the end of the execution, writes to each location are totally ordered.

Idea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: if a thread executes x=1 and then x=2, another thread cannot first

read 2 and then 1.

Storage

Storage Subsystem

Thread Thread…

Write announce
Barrier ack

Write request
Barrier request

Simulation: 2. coherence_propagation

Thread 0 Thread 1

x = 1

x = 2

99Friday, 13 January 2012

Threads can issue read-requests at any time (unless dependency / synch / ...).

Issuing a read-request and committing a read are different actions.

Storage can accept a read-request by a thread at any time, and reply with the
most recent write to the same address that has been propagated to the thread.

Remark: receiving a write-announce is not enough to commit a read instruction.

Write-announces can be invalidated, and read-requests can be re-issued.

Storage + Thread

Storage Subsystem

Thread Thread…

Read request/Write announce
Barrier ack

Write request
Barrier request

100Friday, 13 January 2012

Threads can issue read-requests at any time (unless dependency / synch / ...).

Issuing a read-request and committing a read are different actions.

Storage can accept a read-request by a thread at any time, and reply with the
most recent write to the same address that has been propagated to the thread.

Remark: receiving a write-announce is not enough to commit a read instruction.

Write-announces can be invalidated, and read-requests can be re-issued.

Storage + Thread

Storage Subsystem

Thread Thread…

Read request/Write announce
Barrier ack

Write request
Barrier request

Simulation: 3. read_satisfy

Simulation: 4. invalidate_read

Thread 0 Thread 1

x = 1 r = x

x = 2

Thread 0 Thread 1

x = 1 r1 = x

r2 = x

Remarks: loads can be speculated; difference between read/write transitions

101Friday, 13 January 2012

Naïve message passing

Allowed and observed on Power

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

Simulation: 5. message_passing

102Friday, 13 January 2012

Load buffering

Thread 0 Thread 1

r1 = x r2 = y

y = 1 x = 1

Observable behaviour: r1 = r2 = 1

rf rf

Forbidden on SC and x86-TSO

Allowed and observed on Power

Simulation: 6. load_buffering

103Friday, 13 January 2012

Power ISA 2.06 and ARM v7

Visible behaviour much weaker and subtle than x86.

Basically, program order is not preserved unless:

• writes to the same memory location (coherence)

• there is an address dependency between two loads
data-flow path through registers and arith/logical operations from the value of the first
load to the address of the second

• there is an address or data or control dependency between a load
and a store

as above, or to the value store, or data flow to the test of an intermediate conditional
branch

• you use a synchronisation instruction (ptesync, hwsync, lwsync, eieio,
mbar, isync).

104Friday, 13 January 2012

Load buffering with dependencies

Simulation: 7. load_buffering_data_deps

rf rfls ls

Similarly with control dependencies, e.g.:

 Play with examples in the LB directory

105Friday, 13 January 2012

However dependencies might not be enough

Exercise: WRC/WRC+addrs

106Friday, 13 January 2012

Memory barriers

Power: ptesync, hwsync, lwsync, eieio

ARM: DSB, DMB

107Friday, 13 January 2012

Memory barriers

Power: ptesync, hwsync, lwsync, eieio

ARM: DSB, DMB

107Friday, 13 January 2012

HWSYNC and LWSYNC

The storage accepts a barrier request (HWSYNC) from a thread.

The barrier request is added to the list of event propagated to that thread.

The thread cannot execute instructions following the barrier instructions without
first receiving the barrier ack.

The storage sends the barrier ack only once all the preceding events have
been propagated to all other threads.

Storage Subsystem

Thread Thread…

Read request/Write announce
Barrier ack

Write request
Barrier request

108Friday, 13 January 2012

RWC with HWSYNC

Simulation: WRC/WRC+syncs

109Friday, 13 January 2012

RWC with HWSYNC

Simulation: WRC/WRC+syncs

actually, a dependency
here is enough…

WRC/WRC+sync+addr

109Friday, 13 January 2012

If you want more...

Go to http://www.cl.cam.ac.uk/~pes20/ppcmem/

For each test, either find a trace that leads to the final state, or convince
yourself that such trace does not exists. Some tests are complicated...

110Friday, 13 January 2012

http://moscova.inria.fr/~zappa/work/ppcmem/
http://moscova.inria.fr/~zappa/work/ppcmem/

Mathematics (in HOL4)

rather than informal prose.

111Friday, 13 January 2012

Summary

112Friday, 13 January 2012

MPRI madness

You are encouraged to

choose an internship

earlier and earlier (I expect

that in a future you will have

to pick up a stage even

before lectures begin).

Albert, Luc, and myself have some super cool ideas,

do not hesitate to get in touch with us.

 (and check the internship web-page)

113Friday, 13 January 2012

114Friday, 13 January 2012

Concurrent programming
is hard!

1st year, Introduction to programming

114Friday, 13 January 2012

Concurrent programming
is hard!

1st year, Introduction to programming

Concurrent programming
is hard!

2nd year, Operating systems

114Friday, 13 January 2012

Concurrent programming
is hard!

1st year, Introduction to programming

Concurrent programming
is hard!

2nd year, Operating systems

Concurrent programming
is hard!

4th year, Advanced programming languages
114Friday, 13 January 2012

Concurrent programming
is hard!

1st year, Introduction to programming

Concurrent programming
is hard!

2nd year, Operating systems

Concurrent programming
is hard!

4th year, Advanced programming languages

Concurrent programming
is hard!

DEA, Concurrency

114Friday, 13 January 2012

Concurrent programming
is hard!

1st year, Introduction to programming

Concurrent programming
is hard!

2nd year, Operating systems

Concurrent programming
is hard!

4th year, Advanced programming languages

Concurrent programming
is hard!

DEA, Concurrency

Concurrent programming is even harder than

what I was taught at university!

114Friday, 13 January 2012

Concurrent programming
is hard!

1st year, Introduction to programming

Concurrent programming
is hard!

2nd year, Operating systems

Concurrent programming
is hard!

4th year, Advanced programming languages

Concurrent programming
is hard!

DEA, Concurrency

Concurrent programming is even harder than

what I was taught at university!

We can’t ignore it anymore:

we’ll see that precise semantics, formal methods,

appropriate language design, clever algorithms,

are needed to put concurrent programming on solid basis.

114Friday, 13 January 2012

Key interfaces

These key interfaces are necessarily loose specifications.

Informal prose is a terrible way to express loose specifications:
ambiguous, untestable, and usually wrong.

Architectures and language definitions should be mathematically
rigorous, clarifying precisely just how loose one wants them to be.

(common misconception: precise = tight?)

Low-level software

Hardware

architectures

Applications

Low-level software

language definitions

115Friday, 13 January 2012

Resources

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

Starting point:

P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, M. Myreen

x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors

 Communications of the ACM, Vol. 53, 2010

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, D. Williams

Understanding POWER multiprocessors

PLDI 2011

116Friday, 13 January 2012

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html
http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html
http://cacm.acm.org/
http://cacm.acm.org/

Next lecture:

 Assembler is has-been… why should I care?

117Friday, 13 January 2012

