
Weakness is a virtue
Position paper proposed to EC2 2013

Jade Alglave

University College London

Abstract. The number of interleavings that a concurrent program can have is typically given as
the key difficulty in automatic analysis of concurrent software. Weak memory, as implemented by
modern multiprocessors such as Intel x86, IBM Power and ARM, is generally believed to make
this problem even harder. On the contrary, we believe that by embracing rather than fleeing
from weak memory, we can obtain efficient verification techniques.

1 Introduction

Automatic verification of concurrent programs represents a challenge, whether it aims at
proving the full correctness of a program (e.g. a program sorting a list actually sorts the list), or
at checking specific properties (e.g. the program is free of data races) short of full correctness.
Full correctness is rarely proved without the help of the user. On the contrary, checking some
specific properties can be done in an automated manner. For sequential programs impressive
practical results in this direction have been obtained by marrying verification and static
program analysis, exemplified by the application of SLAM [BBC+] to industrial device drivers
and Astree [CCF+05] to Airbus code.

It seems to us that concurrent verification still struggle to scale. The very few existing tools
for concurrency verify programs in the hundreds of lines of code, but hardly any will verify a
thousand lines [DKW08]. We propose here an hypothesis (backed up by initial experimental
evidence in a bounded model-checking setting [AKT13]) that we believe could enhance the
scalability of automatic tools checking that a concurrent program does not violate certain
safety-critical properties of interest.

2 Background

To check properties, we need to define an execution model describing the behaviour of a pro-
gram. Formal methods traditionally resort to Lamport’s Sequential Consistency (SC) [Lam79],
where “the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.”.

Thus on SC, an execution is an interleaving of the instructions of the program, i.e. a total
order. Choosing SC as execution model poses at least two problems.

SC and Weak Memory First, the large number of interleavings modelling the executions of a
program makes their enumeration intractable. Context bounded methods [QR05,MQ05,LR09]
can reduce the number of interleavings to consider, but are unsound in general. On the
Fibonacci example of [Bey12], the Poirot tool, which implements the method of [LR09], gives
wrong results due to the bound (see [AKT13]). Partial order reduction [Pel93,God96,FG05]
reduces the interleavings in a sound way, but suffers from limited scalability. The ESBMC



tool [CF11], which implements this method, needs 13.8s to analyse Fibonacci, whereas it
takes 0.3s to analyse a sequential version.

We believe that the intractability of interleavings already hints at rethinking if not SC,
at least its formulation: we do not need total orders in the definition of SC. Multiprocessors
(e.g., Intel x86 or IBM Power) take us further, by forcing us to reconsider SC altogether.

Indeed, for performance reasons, the chips implement weak memory models, featuring
for example instruction reordering or store buffering (appearing on x86), or store atomicity
relaxation (a particularity of Power and ARM). These chips allow more behaviours than SC,
which has a dramatic effect on programmers, most of whom learned to program under the
assumption of SC.

These observations meet the one made by Hoare in [Hoa72], that attributing an interleav-
ing semantics to parallel programs is problematic, in particular due to the following difficulties:

– “implementing the interleaving on genuinely parallel hardware”, which we interpret as
multiprocessors featuring weak memory models;

– “designing programs to control the fantastic number of combinations involved in an arbi-
trary interleaving”, which echoes the aforementioned difficulties in current model-checking
methods.

We aim at verifying concurrent programs. Naturally, the semantics modelling how pro-
grams behave influences the verification process. Models roughly fall into two classes: opera-
tional and axiomatic.

Operational and Axiomatic Models On the one hand, in model-checking and program analy-
sis, models commonly adopt an operational style, where an execution is valid if it is produced
by a machine switching between tasks. This style models executions via interleavings, with
transitions accessing the memory (as on SC), and others accessing buffers or queues, imple-
menting the features of the hardware. This builds on interleaving notions, hence inherits the
limitations of SC interleaving based verification methods, e.g. the “severely limited scalabil-
ity”, as [LNP+12] puts it. For example, [ABP11] (restricted to Sun Total Store Order, TSO)
bounds the number of context switches.

On the other hand, several hardware vendors’ specifications are in terms of partial or-
ders [spa94,alp02]. Following this lead, we previously defined a large class of memory models
(including x86, Power and ARM) [AMSS10,AMSS12,Alg12]. An execution is defined via par-
tial orders over memory accesses, e.g. the program order in a thread, or the communication
through memory.

3 Hypothesis

The study of these models led us to the following conclusion. It seems to us that the com-
mon opinion within the model-checking community is that we should stick to SC, and more
crucially to its operational definition, because it is easier to reason with. On the contrary, we
believe that by embracing rather than fleeing from weak memory, we can obtain efficient ver-
ification techniques, if we adopt the right models. To demonstrate this contention, we would
like to show that:
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If the weakness leads to performant chips, why would it not lead to performant verification?
Programming and analysis could fit the models, rather than try to control or harness them.

In other terms, verifying a program againt weak memory models should be no harder
than against SC. Certain programs should even be easier to verify under weak memory: if a
program exploits the weakness of the model (e.g. lock-free idioms), it fits closely the model it
was designed for. Thus, if the analysis techniques also fit the models, the verification process
might get altogether easier.

More generally, whether considering SC or weak memory, partial orders can help verifica-
tion to scale, by avoiding to enumerate interleavings. Preliminary experiments provide initial
evidence for our hypothesis: we were able to verify, in a bounded model-checking setting, a
queue mechanism in Apache HTTP server software, which represents 28900 lines of code, in
2.8s, when it takes 1.7s to analyse a particular interleaving of the same program [AKT13].

Partial orders filtered by axiomatic models seem an ideal setting, as they are constraint-
based specifications to exploit the efficiency of constraint solvers, e.g. SAT or SMT, as done
in [BAM07,SW10,SW11,AKT13] for programs with bounded loops. Note that this is radically
different from partial order reduction, which considers total orders as primary, and uses partial
orders merely as an optimisation tool, to reduce the number of total orders to examine.

4 Perspectives

Partial order models (also known as independence or true concurrency models) traditionally
step away from interleavings, as done e.g. in [Win82,Pra82,Pra86,BAF94]. Yet, as Hayman
and Winskel note in [HW08]: “It is surprising that, to our knowledge, there has been no com-
prehensive study of the semantics of programming languages inside an independence model.”.

Indeed, such models have almost never been used to define a semantics for a language,
except communicating processes languages, e.g. CCS [Win82] and CSP [Bro02], and programs
with while loops in [HW08]. Mathematical properties of such models have been studied in
detail, but in isolation from their use in the interpretation of programming languages.

This suggests the following topics of research:

– the invention of semantics of real-world assembly and imperative concurrent programing
languages based on partial order models;

– the invention of new abstractions of these models enabling scalable automatic verification.

Our hypothesis concerning independence models for verification extends naturally from
memory architectures to distributed systems. Many people have observed that the mod-
ern memory architectures can be thought of as distributed systems, and the weakness in
shared-memory systems is certainly reminiscent of weak consistency in databases. It will be
particularly important to develop formal foundations which underpin these informal similar-
ities and observations. An interesting step in this direction has been taken in recent work by
Burckhardt, Gotsman, and Yang, which generalises models such as ours [Alg12] to show that
independence models are useful to describe properties of distributed systems (see [BGY]).
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