Osiris: an Iris-based program logic for OCaml.

Arnaud Daby-Seesaram (ENS Paris-Saclay, France)
François Pottier (Inria, Paris, France)
Armaël Guéneau (Inria, Laboratoire Méthodes Formelles, France)

8 September 2023

General Context.

Context

- Some verification tools are based on:
automatic solvers,
(manual) deductive reasoning about programs.
- Coq is a proof assistant ;
- Iris is a Coq framework for separation logic and program verification.

General Context.

Context

- Some verification tools are based on:
automatic solvers,
(manual) deductive reasoning about programs.
- Coq is a proof assistant ;
- Iris is a Coq framework for separation logic and program verification.

Why choose Iris ?

Builtin proof techniques to help program verification. Iris handles:

- divergent programs,
- programs manipulating a heap,
- programs with higher order functions,

Osiris allows users to use most Iris features.

Program Verification

Program specification.

- Pre-condition: condition under which the program is proven safe ;
- Post-condition: provides information on the result of a computation.

Specification of length:

$$
\begin{gathered}
\{v \text { represents the list } l\} \\
\text { call length } v \\
\{\text { גres. }\ulcorner\text { res }=\text { length of the list } l\urcorner\}
\end{gathered}
$$

Program Verification

Program specification.

- Pre-condition: condition under which the program is proven safe;
- Post-condition: provides information on the result of a computation.

Specification of length:

$$
\begin{gathered}
\{v \text { represents the list } l\} \\
\text { call length } v \\
\{\text { גres. }\ulcorner\text { res }=\text { length of the list } l\urcorner\}
\end{gathered}
$$

To verify a program should ensure:

- its safety \Rightarrow no crash,
- its progress \Rightarrow it is not stuck,
- the respect of its post-condition ϕ.

Previous Work and contributions.

Previous Work

- CFML2 allows interactive proofs of OCaml programs in Coq.
- Iris has been instantiated with small ML-like languages,
- Other projects have used Iris to reason about specific aspects of OCaml:

Project	Aspect of the language
Cosmo	Multicore OCaml and weak-memory
iris-time-proofs	Time complexity in presence of lazy
Hazel	Effect Handlers
Space-Lambda	Garbage Collection

Our contributions.

- a proof methodology to prove OCaml programs,
- an original semantics for OCaml,
- a program logic using Iris.

In this talk

(1) Proof methodology: how to verify an OCaml program?
(2) Structure of Osiris:

- an original semantics for OCaml,
- a program logic built on Iris \rightarrow Coq tactics.

Osiris is still a prototype at the moment.

Proof Methodology

Methodology:

- translate OCaml files into Coq files,
- write specifications of the files (seen as modules) and their functions,
- prove these specifications.

Translation tool.

Translation process:

(1) retrieve the Typed-Tree of the OCaml file to translate (using compilerlibs),

$$
\begin{aligned}
& (* \text { Content of [file.ml] *) } \\
& \text { let cst }=10
\end{aligned}
$$

Translation tool.

Translation process:

(1) retrieve the Typed-Tree of the OCaml file to translate (using compilerlibs),

```
(* Content of [file.ml] *)
let cst = 10
```

(2) translate the Typed-Tree into an Osiris AST,
MkStruct [ILet (Binding1 (PVar "cst") (EInt 10))]

Translation tool.

Translation process:

(1) retrieve the Typed-Tree of the OCaml file to translate (using compilerlibs),

$$
\begin{aligned}
& (* \text { Content of [file.ml] *) } \\
& \text { let cst }=10
\end{aligned}
$$

(2) translate the Typed-Tree into an Osiris AST,
MkStruct [ILet (Binding1 (PVar "cst") (EInt 10))]
(3) print the module-expression into a Coq file.

```
Definition _File : mexpr :=
    MkStruct [ ILet (Binding1 (PVar "cst") (EInt 10)) ].
```


Example: a toy module. (I)

```
module Toy = struct
    let rec length l =
        match l with
        | [] }->
        | _ :: l }->1+\mathrm{ length l
    let lily = [1; 2; 3; 4]
    let len = length lily
end
```


Example: a toy module. (II)

```
module Toy = struct
    let rec length l =
        match l with
        | [] }->
        | _ :: l }->1+\mathrm{ length l
    let lily = [1; 2; 3; 4]
    let len = length lily
end
```


Specification of the module:

- it contains a function length;
- the function length satisfies the aforementioned specification.

Example: a toy module. (II)

```
module Toy = struct
    let rec length l =
        match l with
        | [] }->
        | _ :: l }->1+\mathrm{ length l
    let lily = [1; 2; 3; 4]
    let len = length lily
end
```


Specification of the module:

- it contains a function length;
- the function length satisfies the aforementioned specification.

Verification of a module.

- evaluate the module-expression,
\hookrightarrow The evaluation contains breakpoints, e.g. at:
function calls,
- let-bindings.
- use tactics to make progress if need be.
\hookrightarrow e.g. heap manipulations, non-deterministic constructs of the semantics.

Example: Proof script.

```
module Toy = struct
    let rec length l =
        match l with
        |[] }->
        | _ :: l }->1+\mathrm{ length l
    let lily = [1; 2; 3; 4]
    let len = length l
end
```

```
wp. (* \leftarrow starts the evaluation of [Toy]. *)
(* The evaluation stops after the body of [length]. *)
oSpecify "length" (* I want to prove that [length] *)
    spec_length (* satisfies [spec_length]. *)
    "#Hlen"!. (* Please remember this fact as "Hlen". *)
{(* Omitted. *) }
(* The evaluation starts again...
    and stops after the evaluation of [1; 2; 3; 4]. *)
wp_continue. (* Nothing to do here. *)
(* The evaluation starts once more...
    and stops on the function call [length lily] *)
wp_use "Hlen". (* Use "Hlen". *)
(* Omitted : introduction of the result. *)
(* [len] is about to be added to the environment
    this is a breakpoint for the evaluation. *)
wp_continue. (* Nothing to do here. *)
(* Osiris has all the ingredients and can finish the proof. *)
oModuleDone.
```


Description of the tool.

Goal

Prove programs using Coq tactics.

Steps

(1) Give meaning to the syntax,
\hookrightarrow define an operational semantics for OCaml.
(2) Define reasoning rules to reason about this semantics,
\hookrightarrow these rules are proven once and for all.
(3) Define Coq tactics to exploit these rules.
\hookrightarrow the tactics rely on aforementioned rules \Rightarrow they are correct by construction.

Motivation for an ample-step semantics.

Most Iris projects use a small-step semantics.
Small-step semantics \longrightarrow Iris-provided program logic
This is appealing. . . but OCaml is a large language.

Motivation for an ample-step semantics.

Most Iris projects use a small-step semantics.
Small-step semantics \longrightarrow Iris-provided program logic
This is appealing. . . but OCaml is a large language.

A small-step semantics for OCaml semantics is large.

Number of transitions due to the many constructions of the language.
$\hookrightarrow e . g$. pattern-matching, ADTs, records, modules.
Non-Determinism the order of evaluation of expressions is not defined, and some expressions can be erased ;
\hookrightarrow e.g. function calls, tuples, dynamic checks.

Solution.

A semantics in two steps, each tackling one of these issues.

Ample-step semantics.

Definition: Ample-step semantics

(1) Evaluate OCaml expressions in a smaller language micro A;

```
Fixpoint eval : env }->\mathrm{ expr }->\mathrm{ micro val.
Definition call : val }->\mathrm{ val }->\mathrm{ micro val.
```

micro A describes generic computations of type A.
(2) Provide a small-step semantics to micro A.

```
Inductive step : store * micro A }->\mathrm{ store * micro A }->\mathrm{ Prop.
```


Definition of micro A.

```
Inductive micro A :=
| Ret (a: A)
|rash
| Next
| Par {A1 A2} (m1 : micro A1) (m2 : micro A2)
        (k:A1*A2 }->\mathrm{ microA)
        (ko: unit }->\mathrm{ micro A)
| Stop {X Y} (c : code X Y) (x : X)
        (k: Y }->\mathrm{ micro A)
        (ko: unit }->\mathrm{ micro A).
```

```
Inductive code : Type }->\mathrm{ Type }->\mathrm{ Type :=
(* code X Y : Type of a system call.
    X : type of the parameter of the syst. call,
    Y : type of the returned value. *)
(* Provides:
    - Non-deterministic binary choice ;
    - heap manipulation ;
    - potential divergence. *)
```

(a) Computations of type A.
(b) System calls, implementing OCaml features.

Figure: Definition of micro A.

Par is used to model non-determinism, not parallelism.

Example

```
(* Evaluation of a function call. *)
eval }\eta(\mathrm{ EApp e1 e2) =
    Par (eval \eta e1)
    (eval \eta e2)
    ( }\lambda\mathrm{ '(v1, v2), call v1 v2)
    (\lambda_, Next)
```


Proofs of programs.

To prove an expression e
is to prove

$$
\text { after }(\mathrm{eval} \eta e)\{\phi\}
$$

- eval ηe : micro val,
- after ensures safety, etc.

Proofs of programs.

To prove an expression e
is to prove

$$
\text { after }(\mathrm{eval} \eta e)\{\phi\}
$$

- eval ηe : micro val,
- after ensures safety, etc.

A Selection of reasoning rules

$$
\begin{aligned}
\operatorname{RET} \frac{\phi(a)}{\operatorname{after}(\operatorname{Ret}(a))\{\phi\}} & \operatorname{PAR} \frac{\forall v_{1} v_{2} \cdot \phi_{1}\left(v_{1}\right)-* \phi_{2}\left(v_{1}\right) * \operatorname{after}\left(k\left(v_{1}, v_{2}\right)\right)\{\phi\}}{\operatorname{after}\left(\operatorname{Par}\left(m_{1}, m_{2}, k, k o\right)\right)\{\phi\}} \\
\text { ALLOC } & \stackrel{\triangleright(\forall \ell . \ell \mapsto v * \operatorname{after}(k(\ell))\{\phi\})}{\operatorname{after}(\text { Stop }(\text { CAlloc, } v, k, k o))\{\phi\}}
\end{aligned}
$$

An alternative Program Logic for pure programs.

Définition: simp

$\operatorname{simp} m_{1} m_{2} \triangleq$ «The computation m_{1} can be simplified into $m_{2} . »$
after and simp

$$
\text { SIMP } \frac{\operatorname{simp} m_{1} m_{2} \quad \text { after }\left(m_{2}\right)\{\phi\}}{\text { after }\left(m_{1}\right)\{\phi\}}
$$

Two uses of simp:

- Program specification: Let f be an OCaml function represented by the Gallina function f and a be represented by a.

$$
\operatorname{simp}(c a l l f a)(\operatorname{Ret}(f a))
$$

- Program simplification: simp (eval $\eta \underbrace{1+2+3+4+5}_{8 \text { function calls }}$) (Ret 15).

Short- and long-term goals for Osiris.

Short-term goal

To add support for more OCaml constructs and features.

(Very) long-term goal

Osiris might some day incorporate previous work:
Hazel, Cosmo, iris-time-proofs or Space-Lambda.
We are far from this!
There is still a lot of work to be done before we can even begin to think about it.

Conclusion

Osiris currently supports:

- modules and sub-modules,
- immutable records,
- function calls,
- recursive functions,
- for-loops,
- manipulation of references,
- ADTs and pattern-matching.
\hookrightarrow Note: we need more tests about these constructs.

Future work

We have yet to understand how:

- pure modules and functions should be specified and used;
- to specify modules;
\hookrightarrow we have used two styles of specifications, but neither is fully satisfying yet.
- to describe dependencies;
\hookrightarrow There is still work to do to make the tool more ergonomic, and some uncertainties wrt. some semantic choices.

Separation Logic and Iris.

- Separation Logic
- Iris

A few words on Separation Logic.

In Separation Logic. ..

- Notion of resources, describing various logical information.
- Propositions are called «assertions».
- An assertion holds iff resources at hand satisfy it. e.g.

$$
W^{i} \triangleq « \text { ownership of } i \text { tons of wood.» }
$$

Two additional operators:

- Separating conjunction (*) :

$$
W^{40} \vdash W^{30} * W^{10}
$$

- Magic Wand ($*$) :

$$
W^{27} \vdash W^{3} * W^{30}
$$

A few words on Iris.

Iris is a framework for Separation Logic. It is written, proven and usable in Coq.

Iris' logic is modal and step-indexed

- Persistence modality $\square P: \square P \vdash \square P * P$.
- later modality $\triangleright P$: P will hold at the next logical step.
- Fancy-Update modality $\mathcal{E}_{1} \Rightarrow_{\mathcal{E}_{2}} P: P$ and invariants whose name appear in \mathcal{E}_{2} hold, under the assumption that all invariants whose name occurs in \mathcal{E}_{1} hold.
- Basic-Update modality $\Rightarrow P$: allows to update the ghost state before proving P.

Proof techniques provided by Iris

resources Users can define their own resources ;
invariants $P^{\mathcal{N}}$ is a logical black box containing P. The name \mathcal{N} is associated with the box ;
induction de Löb $(\square(\triangleright P \rightarrow P)) \rightarrow P$.

Weakest Precondition.

- Highly simplified, simplified and exact definition of after
\rightarrow Adequacy theorem

Definition of after.

Very simplified version: no heap, no invariant.

Weakest Precondition

- If $\exists v . m=\operatorname{Ret}(v)$, then

$$
\operatorname{after}(m)\{\Phi\} \triangleq \Phi(v)
$$

- Otherwise

$$
\begin{aligned}
& \left.\operatorname{after}(m)\{\Phi\} \triangleq \quad \begin{array}{rl}
& \\
\forall \exists m^{\prime} . m & \left.\rightsquigarrow m^{\prime}\right\urcorner * \\
\forall m^{\prime} . & \ulcorner m
\end{array}>m^{\prime}\right\urcorner \rightarrow \\
& \\
& \triangleright \operatorname{after}\left(m^{\prime}\right)\{\Phi\}
\end{aligned}
$$

Definition of after.

Simplified version: there is a heap, but still no invariants.

Logical Heap

For any physical heap $\sigma, \mathcal{S}(\sigma)$ is an assertion describing the heap. It is provided by Iris.

Weakest Precondition

- If $\exists v . m=\operatorname{Ret}(v)$, then

$$
\operatorname{after}(m)\{\Phi\} \triangleq \forall \sigma . \mathcal{S}(\sigma) * \mathcal{S}(\sigma) * \Phi(v)
$$

- Otherwise

$$
\begin{aligned}
& \operatorname{after}(m)\{\Phi\} \triangleq \forall \sigma . \mathcal{S}(\sigma) * \\
& \qquad \begin{aligned}
\left\ulcorner\exists \sigma^{\prime}, m^{\prime}\right. & \left.(\sigma, m) \rightsquigarrow\left(\sigma^{\prime}, m^{\prime}\right)\right\urcorner * \\
\forall \sigma^{\prime}, & m^{\prime} .\left\ulcorner(\sigma, m) \rightsquigarrow\left(\sigma^{\prime}, m^{\prime}\right)\right\urcorner \cdots \\
& \triangleright \mathcal{S}\left(\sigma^{\prime}\right) * \operatorname{after}\left(m^{\prime}\right)\{\Phi\}
\end{aligned}
\end{aligned}
$$

Definition of after.

Real definition of after.

Logical Heap

For any physical heap $\sigma, \mathcal{S}(\sigma)$ is an assertion describing the heap. It is provided by Iris.

Weakest Precondition

- If $\exists v \cdot m=\operatorname{Ret}(v)$, then

$$
\operatorname{after}_{\mathcal{E}}(m)\{\Phi\} \triangleq \forall \sigma . \mathcal{S}(\sigma) *_{\mathcal{E}} \eta_{\emptyset \emptyset} \models_{\mathcal{E}} \mathcal{S}(\sigma) * \Phi(v)
$$

- Otherwise

$$
\begin{aligned}
& \operatorname{after}_{\mathcal{E}}(m)\{\Phi\} \triangleq \forall \sigma . \mathcal{S}(\sigma){ }^{*} \\
& { }_{\mathcal{E}} \models_{\emptyset}\left\ulcorner\exists \sigma^{\prime}, m^{\prime} .(\sigma, m) \rightsquigarrow\left(\sigma^{\prime}, m^{\prime}\right)\right\urcorner * \\
& \forall \sigma^{\prime}, m^{\prime} .\left\ulcorner(\sigma, m) \rightsquigarrow\left(\sigma^{\prime}, m^{\prime}\right)\right\urcorner \rightarrow \\
& { }_{\emptyset} \Rightarrow_{\emptyset} \triangleright_{\emptyset} \Rightarrow_{\emptyset \emptyset} \vDash_{\mathcal{E}} \mathcal{S}\left(\sigma^{\prime}\right) * \operatorname{after}_{\mathcal{E}}\left(m^{\prime}\right)\{\Phi\}
\end{aligned}
$$

Adequacy theorem for after.

Adequacy theorem

Let A be a type, m_{1} and m_{n} terms of type micro A, σ_{n} a heap, n a natural integer, and ψ a pure proposition.
If the configuration $\left(\emptyset, m_{1}\right)$ reduces in n steps to $\left(\sigma_{n}, m_{n}\right)$, and if the following assertion holds:
$\vdash^{\top} \xi_{\top} \exists(\Phi: A \rightarrow i P r o p \Sigma) \cdot \operatorname{after}_{\top}\left(m_{1}\right)\{\Phi\} *\left(\operatorname{after}_{\top}\left(\mathcal{S}\left(\sigma_{\top}\right) * m_{\top}\right)\{\phi\} *_{T} \xi_{\emptyset}\ulcorner\psi\right.$ then ψ is true.

Corollary : Progress and respect of the post-condition.

Let A be a type, m_{1} and m_{n} terms of type micro A, σ_{n} a heap, n a natural integer and ψ a pure post-condition (i.e. of type $\mathrm{A} \rightarrow$ Prop).
If $\left(\emptyset, m_{1}\right)$ reduces to $\left(\sigma_{n}, m_{n}\right)$ in n steps, and that the following assertion holds:
$\vdash \forall\left(\right.$ hypothesis granted access to resources) .after $\uparrow\left(m_{1}\right)\{\lambda v .\ulcorner\psi(v)\urcorner\}$
then the configuration $\left(\sigma_{n}, m_{n}\right)$ is not stuck, i.e. either m_{n} is a value, or $\left(\sigma_{n}, m_{n}\right)$ can step. Moreover, if m_{n} is a value v, then $\psi(v)$ holds.

Examples: programs verifies with Orisis.

- Counter
- Records

Monotone counters.

- Specifications
- Proof
- Use-Case
- Return
, Main menu

Counters: code

```
module Counter \(=\) struct
    let make () = ref 0
    let incr \(c=c:=!c+1\)
    let set \(\mathrm{c} v=\) assert (!c<=v) ;
        \(\mathrm{c}:=\mathrm{v}\)
    let get \(c=\) ! \(c\)
end
```

Return
Main ment

Counters (uc) : code

```
open Counters
let do2 (f : 'a -> 'b) (a : 'a) : 'b * 'b = (f a, f a)
let count_for n =
    let c, c' = do2 Counter.make () in (* !c = !c' = 0 *)
    Counter.set c' n ;
    for i=1 to n do
    Counter.incr c;
    Counter.set c'(n + i) (* [c] stores i and [c'] stores (n + i). *)
    done;
    (* As [c] stores [n] and [c'] stores [n+n] after the for-loop, the difference
    is [n]. *)
    assert (Counter.get c' - Counter.get c = n) ;
    (* Return [n] *)
    Counter.get c
let count_rec n =
let c = Counter.make () in
    let rec aux i =
        let () = assert (0<= i) in
        match i with
        | 0}->\mathrm{ Counter.get c
        | _ }->\mathrm{ Counter.incr c; aux (i - 1)
    in aux n
let () = assert (2 = count_for 2)
let () = assert (2 = count_rec 2)
```


Counters: Specification. I

```
Definition is_counter (n : nat) (v : val) : iProp \(\Sigma:=\)
    \(\exists(\ell: \mathrm{loc}),\ulcorner\mathrm{v}=\# \ell\urcorner * \ell \mapsto \# \mathrm{n}\).
Definition make_spec (vmake : val) : iProp \(\Sigma:=\)
    \(\square\) WP call vmake \(\#()\{\{\lambda\) res, is_counter 0 res \(\}\}\).
Definition get_spec (vget : val) : iProp \(\Sigma:=\)
    \(\square \forall\) (v : val) (n : nat),
    is_counter \(\mathrm{n} \mathrm{v}-*\) WP call vget \(\mathrm{v}\{\{\lambda\) res, \(\ulcorner\) res \(=\# \mathrm{n}\urcorner *\) is_counter n v\(\}\}\).
Definition incr_spec (vincr : val) : iProp \(\Sigma:=\)
    \(\square \forall\) (v : val) (n : nat),
    is_counter n v -*
    WP call vincr v \(\{\{\lambda\) res, \(\ulcorner\) res \(=\operatorname{VUnit}\urcorner *\) is_counter \((\mathrm{S} \mathrm{n}) \mathrm{v}\}\}\).
Definition set_spec (vset : val) : iProp \(\Sigma:=\)
    \(\square \forall\) (v : val),
    WP call vset v \{\{
\(\lambda\) res,
\(\forall\) (n m : nat),
            \(\ulcorner(\mathrm{n}<=\mathrm{m}) \%\) nat \(\urcorner \rightarrow\)
            「representablen \(\urcorner \rightarrow\)
            「representable m \(\urcorner \rightarrow\)
            is_counter n v -*
                WP call res \(\# \mathrm{~m}\{\{\lambda\) res, \(\ulcorner\) res \(=\operatorname{VUnit}\urcorner *\) is_counter m v\(\}\}\}\}\).
```

 - Return
 Main menu

Counters: Specification. II

```
Definition Counter_specs : spec val :=
    SpecModule
        Auto
        [
            ("make", SpecImpure NoAuto make_spec) ;
            ("get", SpecImpure NoAuto get_spec) ;
            ("incr", SpecImpure NoAuto incr_spec) ;
            ("set", SpecImpure NoAuto set_spec)
        ]
        emp%I.
Definition Counter_spec : val }->\mathrm{ iProp }\Sigma:
    \lambdav, (\square satisfies_spec Counter_specs v)%I.
Definition File_spec (v : val) : iProp \Sigma:=
    \square \text { \atisfies_spec}
    (SpecModule Auto [("Counter", SpecImpure NoAuto Counter_spec)] emp%I) v.
```


Return

- Main menu

Counters : proof

```
Lemma File_correct :
    \vdashWP eval_mexpr \eta_Counters {{File_spec }}.
Proof using H}\eta\mathrm{ osirisGSO }\Sigma\eta\mathrm{ .
    oSpecify "make" make_spec vmake "#Hmake"!.
    { iIntros "!>".
        @oCall unfold; wp_bind; wp_continue.
        wp_alloc \ell"[H\ell _]".
        iExists \ell.
        iSplit; first equality.
        by cbn. }
    oSpecify "incr" incr_spec vincr "#Hincr" !.
    { iIntros "!>" (? n) "(%\ell& }->&H\ell)"
        call. wp_load "H\ell". wp_store "H\ell".
        replace (VInt (repr (n + 1))) with (#(S n)); last first.
        { simpl. do 2 f_equal; lia. }
        prove_counter.}
    oSpecify "set" set_spec vset "#Hset" !.
    {(* ... *)}
    oSpecify "get" get_spec vget "#Hget" !.
    { iIntros "!>"(? nc) "(%\ell& }->&H\ell)"
        call. wp_load "H\ell". prove_counter.}
    oSpecify "Counter" Counter_spec vCounter "#?" !.
    { iModIntro. wp_prove_spec. }
    iModIntro; wp_prove_spec.
Qed.
```

Records

- Code
- Specifications
- Proof

Records : code

```
type \(\mathrm{r}=\{\)
    i: int;
    b: bool;
\}
let r_elt: \(r=\{\)
    i \(=10\);
    b = true;
\}
let \(f l i p r=\{r\) with \(b=\) not r.b \(\}\)
let lily \(=\) [ r_elt; flip r_elt ]
let \(r_{\text {_ }}\) val \(r=\)
    match r.b with
    | true \(\rightarrow\) r.i * 2-1
    | false \(\rightarrow\) r.i
let sum r1 r2 =
    r_val r1 + r_val r2
```

```
let rec is_odd_naive n =
    assert (n > = 0);
    if n > 1 then
        is_odd_naive (n-2)
    else begin
        if n =0
            then false
            else true
        end
let is_odd n = n mod 2 = 0
type nat =
|
S of nat
let rec is_odd' = function
| O T true
| S n m not (is_odd' n)
```


Records: specifications I

```
(* (2) Definition of some values; useful to write the specs below. *)
Definition enc_r_elt: val := #{| b := true; i := 10 |}.
Definition enc_r_elt': val := #{|b:= false; i := 10|}.
Definition enc_lily : val := #[enc_r_elt; enc_r_elt'].
(* (3) Definition of specifications. *)
Definition is_equal (v res: val) : iProp \Sigma:= \square\ulcorner res = v ᄀ.
(* [flip] negates [b] in records of type [{ b: bool; i: int}]. *)
Definition flip_spec (v : val) : iProp \Sigma:=
    \square\forall(b: bool)(i: Z), WP call v #{| b:= b; i := i |}{{ \lambdar, is_equal r #{| b:= negb b; i:= i |} }}.
(* [r_val_spec] performs a different arithmetic computation depending on the
    fiels [b] of a record. *)
Definition r_val_pure (r: R) : Z := (* ... *)
Definition r_val_spec (r_val: val): iProp \Sigma:=
    \square}(\textrm{r}:\textrm{R}),WP call r_val #r {{ \lambdaresult, is_equal result #(r_val_pure r) } }.
Definition sum_pure (r1 r2: R) : Z := r_val_pure r1 + r_val_pure r2.
Definition sum_spec (vsum: val) : iProp \Sigma:=
    \square}\forall(\textrm{r}1\textrm{r}2: R)
    WP call vsum #r1 {{
            \lambdavpart,
            WP call vpart #r2 {{
                    \lambda res,
                    is_equal res #(sum_pure r1 r2) }} }}.
```


Return

Records : specifications II

```
Fixpoint is_odd_pure (n: nat) : bool := (* ... *)
Definition is_odd_spec (vis_odd: val) : iProp \Sigma:=
    \square}\mathrm{ (n : nat), WP call vis_odd #n {{ is_equal #(is_odd_pure n) }}.
(* Specification of the module. *)
Definition \Lambda :=
[
    ("sum", sum_spec) ;
    ("r_val", r_val_spec) ;
    ("lily", is_equal enc_lily) ;
    ("flip", flip_spec);
    ("r_elt", is_equal enc_r_elt);
    ("is_odd'",is_odd_spec)
].
```


records: Proof. I

```
Lemma Records_spec :
    let }\eta:=\mathrm{ EnvCons "Stdlib" Stdlib $
        EnvNil in
    \vdashWP eval_mexpr \eta_Records {{ module_spec \Lambda }}.
Proof.
    intros }\eta\mathrm{ . wp.
    simpl. wp.
    (* [r_elt] is a known value. *)
    wp_bind. wp_continue. wp_bind.
    (* [flip] has the expected spec. *)
    oSpecify "flip" flip_spec vflip "#Hflip".
    { iIntros "!>" (b i); wp.
        wp_continue.
        simpl.
        wp. equality.}
    wp_bind.
    (* [flip] is applied to [r_elt]. *)
    wp.
    replace
        (VRecord (EnvCons "b" VTrue (EnvCons "i" (VInt (int.repr 10)) EnvNil)))
        with #{| b := true; i := 10 |}; last reflexivity.
        wp_use "Hflip". iIntros (? \leftarrow ). wp_bind.
```

Return
Main menu

records : Proof. II

(* [lily] has the expected value. *)
wp_continue. wp_bind.
(* [r_val] has the expected value. *)
oSpecify "r_val" r_val_spec vr_val "\#Hr_val".
\{ iIntros "!>" ([[|] i]); wp; wp_bind; wp_continue; wp_bind; wp_continue; iPureIntro; equality. \} wp_bind.
(* [sum] is given the trivial spec for now. *)
oSpecify "sum" sum_spec vsum "\#Hsum".
\{ iIntros "!>" ([b1 i1] [b2 i2]).
wp.
do 2 wp_continue.
wp_par; (* ... *).\}
wp_continue. wp_bind.
(* [is_odd] is given the trivial spec for now. *)
oSpecify "is_odd" trivial_spec vis_odd "\#?"; first done. wp_bind.
oSpecify "is_odd'" is_odd_spec vis_odd' "\#His_odd'".
$\{(* \ldots *)\}$
(* Every spec has been proven: [wp_module_spec] can finish the proof. *)
wp_module_spec.
Time Qed.

Return

Extra slides

- Separation Logic and Iris
- Weakest Precondition WP
- Examples

