
1 / 32

Reasoning about Heap Space

We wish to verify a program’s heap space usage,

• using separation logic,
• by viewing heap space as a resource...

2 / 32

Reasoning about Heap Space, without GC

Idea 1. Following Hofmann (1999), let �1 represent one space credit.

Allocation consumes credits; deallocation produces credits.

A function’s space requirement is visible in its specification.

3 / 32

In the presence of GC, what Happens?

In the presence of GC,

• deallocation becomes implicit,
• so we lose the ability to recover space credits while reasoning.

4 / 32

A Ghost Deallocation Operation?

Idea 2. Switch to a logical deallocation operation:

A ghost update V consumes an assertion and produces an assertion.

This marries

• manual reasoning about memory at verification time
• automatic management of memory at runtime.

5 / 32

Soundness?

Is logical deallocation sound?

It does have a few good properties: no double-free, no use-after-free.

Because x 7→ b is consumed,

• a block cannot be logically deallocated twice;
• a block cannot be accessed after it has been logically deallocated.

6 / 32

Soundness?

Unfortunately, logical deallocation in this form is not sound.

Introducing logical deallocation creates a distinction between

• the logical heap that the programmer keeps in mind,
• the physical heap that exists at runtime.

7 / 32

Logical versus Physical Heaps

The following situation is problematic.

The programmer has logically deallocated a block and obtained �3,

but this block is reachable and cannot be reclaimed by the GC.

We have 3 space credits but no free space in the physical heap!

8 / 32

Restricting Logical Deallocation

To avoid this problem, we must restrict logical deallocation:

• A reachable block must not be deallocated.

In the contrapositive,

• A block should be logically deallocatable only if it is unreachable,
• so the GC can reclaim this block,
• so the logical and physical heaps remain synchronized.

9 / 32

The Desired Global Invariant

The logical and physical heaps coincide on their reachable fragments.

10 / 32

Restricting Logical Deallocation: How?

How do we restrict logical deallocation?

• We want to disallow deallocating a reachable block,
• but Separation Logic lets us reason about ownership.
• Reachability is a nonlocal property.

11 / 32

Predecessor Tracking

Idea 3. Following Kassios and Kritikos (2013),

• we keep track of the predecessors of every block.
• If a block has no predecessor, then it is unreachable,
• therefore it can be logically deallocated.

12 / 32

Points-To and Pointed-By Assertions

In addition to points-to, we use pointed-by assertions:

13 / 32

Logical Deallocation

We get a sound logical deallocation axiom:

This axiom deallocates one block.

There is also a bulk logical deallocation axiom.

14 / 32

Dealing with Roots

We want the pointers from the stack(s) to the heap to be explicit,

• so the operational semantics views them as GC roots,
• so our predecessor-tracking logic keeps track of them.

Idea 4. Use a low-level calculus where stack cells are explicit.

15 / 32

Roadmap

1 A Glimpse of SpaceLang

2 A Glimpse of the Reasoning Rules

3 Specification of a Stack

4 Conclusion

16 / 32

Instructions

SpaceLang is imperative. An instruction i does not return a value.

skip no-op
i ; i sequencing
if ∗% then i else i conditional
∗%(~%) procedure call
∗% = v constant load
∗% = ∗% move

∗% = alloc n heap allocation
∗% = [∗%+ o] heap load
[∗%+ o] = ∗% heap store
∗% = (∗% == ∗%) address comparison
alloca x in i stack allocation
fork ∗% as x in i thread creation

The operands of every instruction are stack cells %.

There is no heap deallocation instruction.

17 / 32

Operational Semantics of SpaceLang

A small-step operational semantics, with a few unique features:

• Garbage collection takes place before every reduction step.
• The GC roots are the stack cells.
• Heap allocation fails if the heap size exceeds a fixed limit S.

18 / 32

Roadmap

1 A Glimpse of SpaceLang

2 A Glimpse of the Reasoning Rules

3 Specification of a Stack

4 Conclusion

19 / 32

Heap Allocation

Heap allocation consumes space credits.

Points-to and pointed-by assertions for the new location appear.

One pointer to the value v is deleted.

20 / 32

Heap Store

Reasoning about a heap store involves some administration...

One pointer to v is deleted; one pointer to v ′ is created.

21 / 32

Logical Deallocation

Logical deallocation of a block is a ghost operation:

22 / 32

Soundness of SL�

Theorem (Soundness)
If {�S} i {True} holds, then, executing i in an empty store
cannot lead to a situation where a thread is stuck.

If, under a precondition of S space credits, the code can be verified,
then its live heap space cannot exceed S.

This holds regardless of the value of S (the heap size limit).
Furthermore, the reasoning rules are independent of S.

The rules allow compositional reasoning about space.

23 / 32

Roadmap

1 A Glimpse of SpaceLang

2 A Glimpse of the Reasoning Rules

3 Specification of a Stack

4 Conclusion

24 / 32

Ghost Reference Counting

The user may define custom (simplified) predecessor tracking disciplines.

For example, sometimes, counting predecessors is enough.

v ←[n , ∃L. (v ←[1 L ? |L| = n)

Edge addition and deletion increment and decrement n.

25 / 32

Creation

Creating a stack consumes 4 space credits.
f 7→ 〈create〉
stack 7→ 〈()〉

�4

 ∗f (stack)

∃`.
f 7→ 〈create〉
stack 7→ 〈`〉

isStack ` [] ? `←[1

We get unique ownership of the stack and we have the sole pointer to it.

26 / 32

Pushing

Pushing consumes 4 space credits.

f 7→ 〈push〉
stack 7→ 〈`〉
elem 7→ 〈v〉
�4 ? isStack ` vs

v ←[n

∗f (stack, elem)

f 7→ 〈push〉
stack 7→ 〈`〉
elem 7→ 〈v〉

isStack ` (v :: vs)
v ←[n + 1

The value v receives one more antecedent.

27 / 32

Popping

Popping frees up 4 space credits.

f 7→ 〈pop〉
stack 7→ 〈`〉
elem 7→ 〈()〉

isStack ` (v :: vs)
v ←[n

∗f (stack, elem)

f 7→ 〈pop〉
stack 7→ 〈`〉
elem 7→ 〈v〉
�4 ? isStack ` vs

v ←[n

The number of predecessors of v is unchanged,

because the out-parameter elem receives a pointer to it.

28 / 32

Disposal

Logically deallocation of the stack, a ghost operation, is part of the API.

It requires proving that the stack has zero predecessors.isStack ` vs ? `←[0
∗

(v ,n)∈vns
v ←[n

 VI

 �(4 + 4× |vs|)
∗

(v ,n)∈vns
v ←[n − (v $ vs)

It frees up a linear number of space credits.

29 / 32

Roadmap

1 A Glimpse of SpaceLang

2 A Glimpse of the Reasoning Rules

3 Specification of a Stack

4 Conclusion

30 / 32

Summary of Contributions

A sound logic to reason about heap space usage in the presence of GC.

Our main insights:

• Allocation consumes space credits �n.
• Logical deallocation, a ghost operation, produces space credits.
• Logical dellocation requires predecessor tracking,

which we perform via pointed-by assertions v ←[L.

31 / 32

Limitations and Future Work

Currently, predecessor tracking requires heavy bookkeeping.

We are investigating

• a more flexible deferred logical edge deletion mechanism;
• coarse-grained predecessor tracking based on islands;
• simpler / more automated tracking of roots;
• reasoning directly about call-by-value λ-calculus.

32 / 32

Roadmap

5 Syntax, Semantics of SpaceLang

6 Reasoning Rules of SL�

7 Specification of List Copy

1 / 21

Values, Blocks, Stores

Memory locations: `, c, r , s ∈ L.

Values include constants, memory locations, and closed procedures:

v ::= () | k | ` | λ~x .i

Memory blocks include heap tuples, stack cells, and deallocated blocks:

b ::= ~v | 〈v〉 | �

A store maps locations to blocks, encompassing the heap and stack(s).
The size of a block:

size(~v) = 1 + |~v | size(〈v〉) = size(�) = 0

The size of the store is the sum of the sizes of all blocks.

2 / 21

Call-by-Reference and GC Roots

A reference is a variable or a (stack) location and denotes a stack cell.

% ::= x | c

SpaceLang uses call-by-reference.

A variable denotes a closed reference, not a closed value as is usual.

The operational semantics involves substitutions [c/x].

This preserves the property that the code never points to the heap.

The roots of the garbage collection process are the stack cells.

3 / 21

Instructions

SpaceLang is imperative. An instruction i does not return a value.

skip no-op
i ; i sequencing
if ∗% then i else i conditional
∗%(~%) procedure call
∗% = v constant load
∗% = ∗% move

∗% = alloc n heap allocation
∗% = [∗%+ o] heap load
[∗%+ o] = ∗% heap store
∗% = (∗% == ∗%) address comparison
alloca x in i stack allocation
alloca c in i active stack cell
fork ∗% as x in i thread creation

The operands of every instruction are stack cells (%).

There is no deallocation instruction for heap blocks.

4 / 21

Operational Semantics: Heap Allocation

We fix a maximum heap size S.
Heap allocation fails if the heap size exceeds S.

StepAlloc
σ′ = [`+= ()n]σ

size(σ′) ≤ S σ′′ = 〈s := `〉σ′

∗s = alloc n / σ −→ skip / σ′′

S is a parameter of the operational semantics,

but the reasoning rules of SL� are independent of S.

5 / 21

Operational Semantics: Stack Allocation

The dynamic semantics of stack allocation is in three steps:

StepAllocaEntry
σ′ = [c += 〈()〉]σ

alloca x in i / σ −→ alloca c in [c/x]i / σ′

StepAllocaExit
σ(c) = 〈v〉 σ′ = [c := �]σ
alloca c in skip / σ −→ skip / σ′

Evaluation contexts: K ::= [] | K ; i | alloca c inK .

6 / 21

Garbage Collection

To complete the definition of the operational semantics,

• allow garbage collection before every reduction step.
σ 1 σ′ holds if
• the stores σ and σ′ have the same domain;
• for every ` in this domain,

either σ′(`) = σ(`), or ` is unreachable in σ and σ′(`) = �.
• allow thread interleavings (comes for free with Iris).

7 / 21

Complete Operational Semantics

StepSeqSkip
skip; i / σ −→ i / σ

StepIf
σ(r) = 〈k〉

if ∗r then i1 else i2 / σ −→ k 6= 0 ? i1 : i2 / σ

StepCall
σ(r) = 〈λ~x.i〉 |~x| = |~s|
∗r(~s) / σ −→ [~s/~x]i / σ

StepConst
σ

′ = 〈s := v〉σ
pointers(v) = ∅

∗s = v / σ −→ skip / σ′

StepMove
σ(r) = 〈v〉

σ
′ = 〈s := v〉σ

∗s = ∗r / σ −→ skip / σ′

StepAlloc
σ

′ = [` += ()n]σ
size(σ′) ≤ S σ

′′ = 〈s := `〉σ′

∗s = alloc n / σ −→ skip / σ′′

StepLoad
σ(r) = 〈`〉 σ(`) = ~v 0 ≤ o < |~v|

~v(o) = v σ
′ = 〈s := v〉σ

∗s = [∗r + o] / σ −→ skip / σ′

StepStore
σ(r) = 〈v〉 σ(s) = 〈`〉 σ(`) = ~v
0 ≤ o < |~v| σ

′ = [` := [o := v]~v]σ

[∗s + o] = ∗r / σ −→ skip / σ′

StepLocEq
σ(r1) = 〈`1〉 σ(r2) = 〈`2〉
σ

′ = 〈s := (`1 = `2 ? 1 : 0)〉σ

∗s = (∗r1 == ∗r2) / σ −→ skip / σ′

StepAllocaEntry
σ

′ = [c += 〈()〉]σ

alloca x in i / σ −→ alloca c in [c/x]i / σ′

StepAllocaExit
σ(c) = 〈v〉 σ

′ = [c := �]σ

alloca c in skip / σ −→ skip / σ′

StepFork
σ(r) = 〈v〉 σ

′ = [r := ()][c += 〈v〉]σ

fork ∗r as x in i / σ −→ skip / σ′

spawning alloca c in [c/x]i

StepContext
i / σ −→ i′ / σ′

spawning~i

K [i] / σ −→ K [i′] / σ′

spawning~i

8 / 21

Roadmap

5 Syntax, Semantics of SpaceLang

6 Reasoning Rules of SL�

7 Specification of List Copy

9 / 21

Heap Allocation

Heap allocation consumes space credits.

Points-to and pointed-by assertions for the new location appear.

One pointer to the value v is deleted. (This aspect is optional.)

10 / 21

Heap Store

Writing a heap cell is simple... but involves some administration.

One pointer to v is deleted; one pointer to v ′ is created.

11 / 21

Stack Allocation

A points-to assertion for the new stack cell exists throughout its lifetime.

No pointed-by assertion is provided. (A design choice.)

• No pointers (from the heap or stack) to the stack.

12 / 21

Logical Deallocation

Logical deallocation of a block is a ghost operation:

13 / 21

Deferred Predecessor Deletion

Deletion of deallocated predecessors can be deferred:

A key rule: if L′ is empty, then v becomes eligible for deallocation.

14 / 21

Bulk Logical Deallocation

A group that is closed under predecessors can be deallocated at once:

The rules for constructing a “cloud” (omitted) are straightforward.

15 / 21

More Axioms

Points-to and pointed-by assertions can be split and joined.

Pointed-by assertions are covariant.

Points-to and pointed-by assertions can be confronted.

16 / 21

More Axioms

Space credits can be split and joined.

17 / 21

Roadmap

5 Syntax, Semantics of SpaceLang

6 Reasoning Rules of SL�

7 Specification of List Copy

18 / 21

Lists Without Sharing

Each cell owns the next cell and possesses the sole pointer to it.

isList ` [] , ` 7→ [0]
isList ` (v :: vs) , ∃`′. ` 7→ [1; v ; `′] ? `′ ←[1 ? isList `′ vs

Let’s now have a look at list copy and its spec. (Fasten seatbelts!)

19 / 21

List Copy in SpaceLang

copy , λ(self , dst, src).
alloca tag in ∗tag = [∗src + 0]; – read the list’s tag
if ∗tag then – if this is a cons cell, then

alloca head in ∗head = [∗src + 1]; – read the list’s head
alloca tail in ∗tail = [∗src + 2]; – read the list’s tail
∗src = (); – clobber this root
alloca dst′ in ∗self (self , dst′, tail); – copy the list’s tail
∗dst = alloc 3; – allocate a new cons cell
[∗dst + 0] = ∗tag; – and initialize it
[∗dst + 1] = ∗head;
[∗dst + 2] = ∗dst′

else – this must be a nil cell
∗src = (); – clobber this root
∗dst = alloc 1; – allocate a new nil cell
[∗dst + 0] = ∗tag – and initialize it

20 / 21

Specification of List Copy

The case m = 1, where we have the sole pointer to the list, is special.

21 / 21

	A Glimpse of SpaceLang
	A Glimpse of the Reasoning Rules
	Specification of a Stack
	Conclusion
	Appendix
	Syntax, Semantics of SpaceLang
	Reasoning Rules of SL♢
	Specification of List Copy

