
Thunks and Debits in Iris with Time Credits

F. Pottier A. Guéneau J.-H. Jourdan G. Mével

Inria / Laboratoire Méthodes Formelles

March 16, 2023

1 / 46

From Purely Functional Data Structures to Iris$

2 / 46

From Purely Functional Data Structures to Iris$

2 / 46

From Purely Functional Data Structures to Iris$

2 / 46

From Purely Functional Data Structures to Iris$

2 / 46

The Code that We Specify and Verify

3 / 46

Three Layers

The code discussed in this talk is organized in several layers:

• thunks, also known as suspensions;
• purely functional data structures, such as

• streams, also known as lazy lists;
• the banker’s queue, which use streams.

A very small amount of code with subtle time complexity properties.

4 / 46

Thunks: OCaml Code

Thunks fit in 5 lines of code.

1 type ’a state = UNEVALUATED of (unit -> ’a) | EVALUATED of ’a

2 type ’a thunk = ’a state ref

3 let create f = ref (UNEVALUATED f)

4 let force t =

5 match !t with

6 | UNEVALUATED f -> let v = f() in t := EVALUATED v; v

7 | EVALUATED v -> v

A thunk is a mutable data structure that o�ers a memoization service.
It is viewed as a persistent data structure by the user.
No lock. Only two colors. Reentrancy is a programming error.

5 / 46

Streams: OCaml Code

A stream’s elements are computed on demand and memoized.

1 type ’a stream = ’a cell thunk

2 and ’a cell = Nil | Cons of ’a * ’a stream

Streams are a persistent data structure.

6 / 46

Streams: OCaml Code

Reversing a list and converting it to a stream:

1 let rec revl_append (l : ’a list) (c : ’a cell) : ’a cell =

2 match l with

3 | [] -> c

4 | x :: l -> revl_append l (Cons (x, create @@ fun () -> c))

5
6 let revl (l : ’a list) : ’a stream =

7 create @@ fun () -> revl_append l Nil

Concatenating two streams:

1 let rec append (s1 : ’a stream) (s2 : ’a stream) : ’a stream =

2 create @@ fun () -> match force s1 with

3 | Nil -> force s2

4 | Cons (x, s1) -> Cons (x, append s1 s2)

7 / 46

The Banker’s Queue: OCaml Code

The banker’s queue fits in 10 lines of code.

1 type ’a queue =

2 { lenf: int; f: ’a stream; lenr: int; r: ’a list }

3 let empty () =

4 { lenf = 0; f = nil(); lenr = 0; r = [] }

5 let check ({ lenf = lenf ; f = f; lenr = lenr; r = r } as q) =

6 if lenf >= lenr then q

7 else { lenf = lenf + lenr; f = append f (revl r); lenr = 0; r = [] }

8 let snoc q x =

9 check { q with lenr = q.lenr + 1; r = x :: q.r }

10 let extract q =

11 let x, f = uncons q.f in

12 x, check { q with f = f; lenf = q.lenf - 1 }

It is a persistent data structure.
Every operation has (amortized) constant time complexity.

8 / 46

The Banker’s Queue: Informal Analysis

9 / 46

The Banker’s Queue: Debit Invariant

There is a front stream fs and a rear list rs. One maintains |fs| Ø |rs|.
Every thunk in fs carries a certain debt or debit.
The first |fs| ≠ |rs| thunks have debt K ; the rest have debt 0.

rs

fs K K· · · 0 0· · ·

Elements are inserted in the rear, extracted from the front.

10 / 46

The Banker’s Queue: Extraction

If |fs| > |rs|, then extraction does not require rebalancing.
Extraction requires paying K before the first thunk can be forced.
Including this payment, its time complexity is O(1).

rs
fs K K K· · · 0 0· · ·

11 / 46

The Banker’s Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,
and requires paying K to maintain the invariant.

rs
fs K KK· · · 0 0· · ·

A deep payment,
possibly involving a thunk that does not even exist yet in memory!

12 / 46

The Banker’s Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,
and requires paying K to maintain the invariant.

rs
fs K KK· · · 0 0· · ·

A deep payment,
possibly involving a thunk that does not even exist yet in memory!

12 / 46

The Banker’s Queue: Rebalancing

Rebalancing involves revl , append , and a redistribution of debits.

fs
rs

0 0· · · The queue is unbalanced.
|fs| = n · |rs| = n + 1

rs
fs A A· · ·

C +
Rn 0 0· · · Reverse and append the rear list

to the front stream.

rs
fs

A +
R

A +
R· · · C 0 0· · · Redistribute debits by adding R

to the first n debits.

Moving debits towards the left is safe: it requires earlier payments.

13 / 46

The Banker’s Queue: Formal Analysis

14 / 46

The Banker’s Queue: Public Interface (1)

The banker’s queue admits a simple specification in Iris$.

Banker-Persistent

persistent(BQueue p q xs)

Banker-Empty

{$13} empty () returns (÷q) q {BQueue p q []}

Queues are persistent. Creation costs O(1).

15 / 46

The Banker’s Queue: Public Interface (2)

Insertion and extraction cost O(1).

Banker-Snoc

{$136 ú BQueue p q xs}
snoc q x

returns (÷qÕ) qÕ {BQueue p qÕ (xs ++ [x])}

Banker-Extract

{$165 ú BQueue p q (x :: xs) ú EŒ
p }

extract q
returns (÷qÕ) (x , qÕ) {BQueue p qÕ xs ú EŒ

p }

Extraction requires a token EŒ
p where p is a “non-atomic pool”.

Extraction forces a thunk, and thunks are not thread-safe.

16 / 46

The Banker’s Queue: Internal Definition

The proof states the debit invariant
and relies on high-level reasoning rules for streams.

K , 60
bqueueDebits nf nr , Knf ≠nr ++ 0min(nf ,nr)+1

BQueueRaw p q fs rs ,

÷s, h, l .

Y
__]

__[

pq = (|fs|, s, |rs|, l)q ú
Stream p h s (bqueueDebits |fs| |rs|) fs ú
List l rs

BQueue p q xs ,

÷fs, rs.

I
BQueueRaw p q fs rs ú
pxs = fs ++ rev rs · |rs| Æ |fs|q

17 / 46

Streams: A Key Reasoning Rule

The predicate Stream is indexed with a sequence of debits ds.
The following ghost update allows:

• paying m credits (in depth); and
• moving debits towards the left.

Stream-Forward-Debt

p(m) ds1 Æ ds2 (n)q ≠ú
Stream p h s ds1 xs ú $m VE

Stream p h s ds2 xs

18 / 46

Streams: Debit Subsumption

The debit subsumption judgement (whose definition is not shown)

(m) ds1 Æ ds2 (n)

implies
’i .

ÿ
(take i ds1) Æ m +

ÿ
(take i ds2)

By paying m now,
one reduces the apparent cost of forcing the stream down to depth i
by at most m,
and this holds for every depth i .
When m is zero, this judgement moves debits towards the left.

19 / 46

Questions

How can one construct these high-level reasoning rules, in Iris$,
by starting from first principles?

Let us now descend to the level of thunks.
Let us give formal statements of Okasaki’s reasoning rules

and see how to construct a predicate Thunk that satisfies these rules.

20 / 46

Thunks: a Desired API

21 / 46

Thunks: Abstract Predicate

We would like a persistent assertion Thunk t n „.

More parameters are needed: p, E , R, but are not discussed in this talk.
Side conditions on namespaces and masks are omitted in the following slides.

22 / 46

Thunks: Creation

Creation costs O(1).

Thunk-Create

{$3 ú isAction f n R „}
create f

returns (÷t) t {Thunk p F t n R „}

isAction f n R „ denotes the one-shot triple

1 {R ú $n} f () returns (÷v) v {R ú ⇤ „ v}

So, if the suspended computation costs n then the thunk has debit n.

23 / 46

Thunks: Debt Management

One can over-approximate an apparent debt.

Thunk-Increase-Debt

pn1 Æ n2q ≠ú Thunk p F t n1 R „ ≠ú
Thunk p F t n2 R „

Thunk-Pay

Thunk p F t n R „ ú $k VE

Thunk p F t (n ≠ k) R „

One can pay to reduce an apparent debt.

24 / 46

Thunks: Forcing

Provided the debt is zero, forcing costs O(1).

Thunk-Force

{Thunk p F t 0 R „ ú $11 ú EF
p ú R}

force t
returns (÷v) v {ThunkVal t v ú ⇤ „ v ú EF

p ú R}

A token EF
p is required.

A forced-thunk witness is produced.

25 / 46

Thunks: Forcing an Already-Forced Thunk

Forcing a thunk again costs O(1) even if its debt n is nonzero.

Thunk-Force-Forced

{Thunk p F t n R „ ú ThunkVal t v ú $11 ú EF
p }

force t
returns v {EF

p }

The result v is the value predicted by the ThunkVal assertion.
The postcondition ⇤ „ v is not obtained in this case.

26 / 46

Thunks: Consequence Rule

When n2 is zero, this rule weakens a thunk’s postcondition.
When n2 ”= 0, it allows deep payment and strengthens the postcond.

Thunk-Consequence

Thunk p F1 t n1 R „ ≠ú
isUpdate n2 R „ Â VE

Thunk p F t (n1 + n2) R Â

isUpdate n2 R „ Â denotes the ghost update

’v . (R ú $n2 ú ⇤ „ v) V€ (R ú ⇤ Â v)

A key rule, missing in our previous work (2019) and di�cult to justify.

27 / 46

Construction of Thunks

28 / 46

Construction of Thunks: Overview

We construct the predicate Thunk in three stages.

1 basic thunks satisfy all rules except Thunk-Consequence;
2 proxy thunks support one application of Thunk-Consequence;
3 iterating this construction yields thunks

that support arbitrarily many applications of this rule.

Piggy banks, a ghost data structure, are used at levels 1 and 2.

29 / 46

Piggy Banks

30 / 46

Piggy Banks: Principles

A piggy bank has two states: pending and forced,
described by two Iris assertions P nc and Q.

A piggy bank carries an apparent debt n.
Piggy banks involve no code.
Their reasoning rules reflect Okasaki’s discipline:

• A target amount nc is fixed upon creation.
• One can pay and reduce the apparent debt in several increments.
• When the debt is 0, breaking the bank yields $nc

which can be used to pay for the transition of P nc to Q.
• A piggy bank is persistent.

31 / 46

Piggy Banks: Selected Reasoning Rules

PiggyBank-Create

P nc VE PiggyBank nc

PiggyBank-Increase-Debt

pn1 Æ n2q ≠ú PiggyBank n1 ≠ú
PiggyBank n2

PiggyBank-Pay

PiggyBank n ú $k VE

PiggyBank (n ≠ k)

PiggyBank-Break

PiggyBank 0 ú EF
p VE

÷nc .

A
((Û P nc ú $nc) ‚ Û Q) ú
(Û Q VE EF

p)

B

Breaking the bank is a non-atomic process with two distinct steps:
opening and closing the bank. A unique token forbids reentrancy.
Paying does not require a token, so is permitted at all times.

32 / 46

Piggy Banks: Internal Definition

Internally, a non-atomic invariant and an atomic invariant are used:

PiggyBank P Q A p N n ,
÷ Ï, fi, nc .

÷forced .

Ï ‘æ • forced ú
if ¬forced then P nc else Q

N
p ú

÷forced , ac .

Ï ‘æ ¶ forced ú fi ‘æ • ac ú
if ¬forced then $ac else pnc Æ acq

A ú

fi ‘æ ¶ (nc ≠ n)

They agree on the Boolean flag forced thanks to a shared ghost cell Ï.

33 / 46

Stage 1: Basic Thunks

34 / 46

Basic Thunks: Internal Definition

A basic thunk involves a physical reference t and a piggy bank whose
parameters describe the pending and forced states of the thunk.

BasicThunk p F t n R „ ,
÷”, N. pøN ™ Fq ú t ” ú PiggyBank

(⁄nc . ÷f . ” ‘æ ? ú t ‘æ UNEVALUATED f ú isAction f nc R „)
(÷v . ” ‘æ v ú t ‘æ EVALUATED v ú ⇤ „ v)
ThunkPayment p N n

ThunkVal t v ,
÷”. t ” ú ” ‘æ v

Basic thunks satisfy the desired rules except Thunk-Consequence.

35 / 46

Why Consequence is Tricky

A reminder:
Thunk-Consequence

Thunk p F1 t n1 R „ ≠ú
isUpdate n2 R „ Â VE

Thunk p F t (n1 + n2) R Â

Supporting this rule seems tricky, because

• it appears to set a new postcondition and a new target amount,
• yet these are fixed at construction time

by the invariants of piggy banks and basic thunks;
• furthermore, the old and new views of the thunk must coexist.

36 / 46

Stage 2: Proxy Thunks

37 / 46

An Intuition

Applying Thunk-Consequence to a thunk t
is almost like constructing a new thunk t Õ

via the expression create (⁄(). force t).
If we actually created a new thunk,
we could set a new target amount and a new postcondition.
We need Thunk-Consequence to be a ghost update

(this is absolutely necessary to allow deep payment)
and to not actually create a new thunk...

but it can create a new piggy bank.

38 / 46

Proxy Thunks: Creation Rule

Based on this idea, we create a variant of the consequence rule
that transforms a basic thunk into a proxy thunk:

Proxy-Create

F1 ‡ øN ™ F
Thunk p F1 t n1 R „ ≠ú
isUpdate n2 R „ Â VE

ProxyThunk p F t (n1 + n2) R Â

39 / 46

Proxy Thunks: Internal Definition

A proxy thunk is just a basic thunk together with a new piggy bank.

ProxyThunk p F t n R „ ,
÷n1, n2, „, F1, N. pF1 ‡ øN ™ Fq ú

Thunk p F1 t n1 R „ ú
PiggyBank

(⁄nc . pnc = n1 + n2q ú isUpdate n2 R „ Â)
(÷v . ThunkVal t v ú ⇤ Â v)
ThunkPayment p N n

40 / 46

Thunks: a Common API

Proxy thunks enjoy the same reasoning rules as basic thunks.
The “common thunk API”,

• all rules except Thunk-Create and Thunk-Consequence,

is the same for basic thunks and proxy thunks.

41 / 46

Stage 3: Thunks

42 / 46

Iterating the Construction

We have built proxy thunks on top basic thunks.
The construction works on top of an arbitrary flavor of thunks

provided they satisfy the common API,
and produces a new flavor that again satisfy the common API.

Iterating the construction allows building

• basic thunks,
• proxy thunks that wrap basic thunks,
• proxy thunks that wrap proxy thunks that wrap basic thunks, etc.

The fixed point satisfies the common API plus Thunk-Create and
Thunk-Consequence, that is, the full desired API.

43 / 46

Thunks: Internal Definition

Here is a possible definition of the greatest fixed point:

Thunk p F t n R „ ,
÷Thunk. N, d , F Õ.

Thunk is persistent ú
Thunk satisfies the common thunk API ú
p’d Õ. d < d Õ ∆ F Õ # ø(N . d Õ)q ú
pF Õ ™ øN ™ Fq ú
Thunk p F Õ t n R „

An inductive definition is also possible.

44 / 46

Conclusion

45 / 46

Conclusion

A new result in a beautiful line of work:

• Okasaki (1999)
• Danielsson (2008)
• Mével et al. (2019)

In the paper:

• forbidding reentrancy by indexing thunks with heights;
• specs for operations on streams; machine-checked proofs; etc.

Future work:

• engineering work required to make Iris$ more user-friendly.

46 / 46

https://doi.org/10.1017/CBO9780511530104
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf

Backup Slides

1 / 19

Piggy Banks

2 / 19

Piggy Banks: the Ghost Cell Ï

The cell is owned by exactly two participants.
One token su�ces to know the content of the cell.
The two participants always agree on the content:

Ï ‘æ • forced1 ú Ï ‘æ ¶ forced2 „ pforced1 = forced2q

The two participants must cooperate to update the cell:

Ï ‘æ • forced ú Ï ‘æ ¶ forced V Ï ‘æ • forced Õ ú Ï ‘æ ¶ forced Õ

3 / 19

Piggy Banks: the Ghost Cell fi

There is one authoritative view and many fragmentary views of the cell.
A fragment fi ‘æ ¶ k is a witness that the true value is at least k:

fi ‘æ • ac ú fi ‘æ ¶ k „ pk Æ acq

This is sound because updates must be monotonic:

fi ‘æ • ac V fi ‘æ • (ac + k)

An accurate witness can be created at any time:

fi ‘æ • ac „ fi ‘æ ¶ ac

4 / 19

Thunks

5 / 19

Thunks: Forced-Thunk Witnesses

ThunkVal-Confront

ThunkVal t v1 ú ThunkVal t v2 ≠ú pv1 = v2q

6 / 19

Height-Indexed Thunks

7 / 19

Height-Indexed Thunks: Selected Rules

A thunk can force thunks of lesser height only.

HThunk-Create

{$3 ú isAction f n (Eh
p) „}

create f
returns (÷t) t {HThunk p h t n „}

HThunk-Inc-Height-Debt

ph1 Æ h2q ≠ú pn1 Æ n2q ≠ú
HThunk p h1 t n1 „ ≠ú
HThunk p h2 t n2 „

HThunk-ForceÓ
HThunk p h t 0 „ ú $11 ú EhÕ

p ú ph < hÕq
Ô

force t
returns (÷v) v {⇤ „ v ú ThunkVal t v ú EhÕ

p }

This height-based discipline is simpler than the mask-based discipline
shown earlier.

8 / 19

Streams

9 / 19

Streams: the Predicate Stream

Here is the general form of the predicate Stream:

Stream p h s ds xs

10 / 19

Streams: Definition

The definition is straightforward:

Stream p h s [] xs , False

Stream p h s (d :: ds) xs ,
HThunk p h s d (⁄c .StreamCell p h c ds xs)

StreamCell p h c ds [] , pc = Nilq ú pds = []q

StreamCell p h c ds (x :: xs) ,
÷s. pc = Cons(x , s)q ú Stream p h s ds xs

11 / 19

Streams: Creation

Constructing a stream costs O(1).

Stream-Create

{$5 ú isCellAction p h d e ds xs}
create (⁄().e)

returns (÷s) s {Stream p h s (d :: ds) xs}

isCellAction p h d e ds xs denotes the one-shot triple

1 {Eh
p ú $d} e returns (÷c) c {StreamCell p h c ds xs ú Eh

p}

12 / 19

Streams: Forcing

Provided the head debit is zero, forcing a stream costs O(1).

Stream-ForceI
Stream p h s (0 :: ds) xs ú
$11 ú EhÕ

p ú ph < hÕq

J

force s

returns (÷c) c
I

StreamCell p h c ds xs ú
ThunkVal s c ú EhÕ

p

J

13 / 19

Streams: Specifications of revl and append

revl constructs one expensive thunk followed with n cheap thunks.

Stream-Revl

{List l xs ú $13 ú pn = |xs|q}
revl l

returns (÷s) s {Stream p h s (19n :: 0n) (rev xs)}

Stream-Append

{Stream p h s1 ds1 xs1 ú Stream p h s2 ds2 xs2 ú $8}
append s1 s2

returns (÷s) s {Stream p (h + 1) s (ds1 ÛÙ ds2) (xs1 ++ xs2)}

append joins ds1 and ds2 using the debit join operator ÛÙ.

14 / 19

Streams: Definition of Debit Join

Debit join ÛÙ can be defined as follows:

(ds1 ++ [d1]) ÛÙ (d2 :: ds2) ,
map (A + _) ds1 ++ (A + d1 + B + d2) :: ds2

where A , 30 and B , 11.

15 / 19

Streams: Debit Subsumption: Definition

Sub-Nil

n Æ m
(m) [] Æ [] (n)

Sub-Cons

d1 Æ m + d2 (m + d2 ≠ d1) ds1 Æ ds2 (n)
(m) d1 :: ds1 Æ d2 :: ds2 (n)

16 / 19

Streams: Debit Subsumption: Reasoning Rules

Sub-Variance

(m) ds1 Æ ds2 (n)
m Æ mÕ nÕ Æ n
(mÕ) ds1 Æ ds2 (nÕ)

Sub-Trans

(m1) ds1 Æ ds2 (n1)
(m2) ds2 Æ ds3 (n2)

(m1 + m2) ds1 Æ ds3 (n1 + n2)

Sub-Append

(m) ds1 Æ ds2 (n)
(n) ds Õ

1 Æ ds Õ
2 (k)

(m) ds1 ++ ds Õ
1 Æ ds2 ++ ds Õ

2 (k)

Sub-Add-Slack

(m) ds1 Æ ds2 (n)
(m + k) ds1 Æ ds2 (n + k)

Sub-Repeat

d1 Æ d2
(0) dn

1 Æ dn
2 (n ◊ (d2 ≠ d1))

Sub-Refl

(m) ds Æ ds (m)

17 / 19

The Banker’s Queue

18 / 19

The Banker’s Queue: Specification of check

Banker-Check

{$48 ú BQueueRaw p q fs rs ú p|rs| Æ |fs| + 1q}
check q

returns (÷qÕ) qÕ {BQueue p qÕ (fs ++ rev rs)}

19 / 19

