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Abstract. We present & machine—checked extension of the program logic
Iris with time credits and time receipts, two dual means of reasoning
about time. Whereas time credits are used to establish an upper bound on
a program’s execution time, time receipts can be used to establish a lower
bound. More strikingly, time receipts can be used to prove that certain
undesirable events—such as integer overﬂows——cannot occur until a very
long time has elapsed. We present several machine—checked applications
of time credits and time receipts, including an application where both
concepts are exploited.
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«Aljce: How long s forever? White Rabbit: Sometimes, just one second.”

__ Lewis Carroll, Alice in Wonderland
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hree Layers

The code discussed in this talk is organized in several layers:

® thunks, also known as suspensions;

® purely functional data structures, such as

® streams, also known as lazy lists;
® the banker's queue, which use streams.

A very small amount of code with subtle time complexity properties.
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hunks: OCaml Code

Thunks fit in 5 lines of code.

type 'a state = UNEVALUATED of (unit -> ’a) | EVALUATED of ’a
type 'a thunk = 'a state ref
let create f = ref (UNEVALUATED f)
let force t =
match !t with
| UNEVALUATED f -> let v = f() in t := EVALUATED v; v
| EVALUATED v -> v

A thunk is a mutable data structure that offers a memoization service.
It is viewed as a persistent data structure by the user.

No lock. Only two colors. Reentrancy is a programming error.
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Streams: OCaml Code

A stream’s elements are computed on demand and memoized.

’

1 +type ’'a stream = 'a cell thunk
2 and 'a cell

Nil | Cons of 'a x "a stream

Streams are a persistent data structure.
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Streams: OCaml Code

Reversing a list and converting it to a stream:

let rec revl_append (1l : ’'a list) (c : 'a cell) : 'a cell =
match 1 with
| [1] -> C
| x :: 1L -> revl_append 1l (Cons (x, create @@ fun () -> c))
let revl (1l : 'a list) : ’'a stream =

create @@ fun () -> revl_append 1 Nil

Concatenating two streams:

let rec append (sl : ’'a stream) (s2 : 'a stream) : 'a stream
create @@ fun () -> match force sl with
| Nil -> force s2

| Cons (x, sl) -> Cons (x, append sl s2)
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he Banker's Queue: OCaml Code

The banker’s queue fits in 10 lines of code.

type ’'a queue =

{ lenf: int; f: 'a stream; lenr: int; r: ’'a list }
let empty () =

{ lenf = 0; f =nil(); lenr =0; r=1[] }
let check ({ lenf = lenf ; f = f; lenr = lenr; r=r } as q) =

if lenf >= lenr then q

else { lenf = lenf + lenr; f = append f (revl r); lenr = 0; r =[] }
let snoc g x =

check { q with lenr
let extract q =

g.lenr + 1; r=x :: g.r }

let x, f = uncons g.f in
X, check { g with f = f; lenf = gq.lenf - 1 }

It is a persistent data structure.

Every operation has (amortized) constant time complexity.
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he Banker's Queue: Debit Invariant

There is a front stream fs and a rear list rs. One maintains |fs| > |rs].
Every thunk in fs carries a certain debt or debit.

ouL
The first |fs| — |rs| thunks have debt K; the rest have debt 0. MWKJW

. K-~ KO0 - 0
em’étaut e | |

A/Muk———> rs | |

A
—_/

Elements are inserted in the rear, extracted from the front.
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he Banker's Queue: Extraction

If |fs| > |rs|, then extraction does not require rebalancing.
Extraction requires paying K before the first thunk can be forced.

Including this payment, its time complexity is O(1).

K K---K 0 --- 0
fs '

rs |

g
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he Banker's Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.

M}aﬁkﬂw!

A deep payment,

possibly involving a thunk that does not even exist yet in memory!
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he Banker's Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.

- K K K, |

rs } % i

. This fiata structure also illustrates a subtle point about nested suspensions—
! e dle]blts for a pest'ed suspension may be allocated, and even discharged, be-
ore the suspension is physically created. For example, consider how + works

A deep payment,

possibly involving a thunk that does not even exist yet in memory!
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he Banker's Queue: Rebalancing

Rebalancing involves revl, append, and a redistribution of debits.

fs | 0 --- 0 | The queue is unbalanced.
rs | emrw“‘m ifsl=nA|rs|=n+1
7 Dk
C +
fo } A--- ARnO --- 0 { Reverse and append the rear list
rs | to the front stream.
A+ A+
ok C0 - O Redistribute debits by adding R
rs | to the first n debits.

A+R<K  C<K O<K

Moving debits towards the left is safe: it requires earlier payments.
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he Banker's Queue: Public Interface (1)

The banker’'s queue admits a simple specification in Iris®.

BANKER-PERSISTENT
persistent( BQueue p q xs)

BANKER-EMPTY
{$13} empty () returns (3q) q {BQueue p q [|}

Queues are persistent. Creation costs O(1).
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he Banker's Queue: Public Interface (2)

Insertion and extraction cost O(1).

BANKER-SNOC
{$136 * BQueue p q xs}

snoc q x
returns (3q') ¢’ {BQueue p ¢’ (xs ++ [x])}

BANKER-EXTRACT
{$165 * BQueue p q (x::xs) x £°}

extract q
returns (3q") (x, q") {BQueue p ¢’ xs * £3°}

Extraction requires a token #° where p is a “non-atomic pool”.

Extraction forces a thunk, and thunks are not thread-safe.
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he Banker's Queue: Internal Definition

The proof states the debit invariant

and relies on high-level reasoning rules for streams.

60 deavned

K nf—nr 44 Omin(nf,nr)—l—l “AQCI

2ldchle

K
bqueueDebits nf nr

> > >

BQueueRaw p q fs rs
( “q=(Ifs|,s, [rs], 1) *

ds, h, I. § Stream p h s (bqueueDebits |fs| |rs|) fs
| List]'rs Steam & ndened ki
a A dequemce % Bt

{ BQueueRaw p q fs rs x

"xs =fs ++ rev rs A |rs| < |fs|™

17/ 46



Streams: A Key Reasoning Rule

The predicate Stream is indexed with a sequence of debits ds.
The following ghost update allows:

® paying m credits (in depth); and

® moving debits towards the left.

STREAM-FORWARD-DEBT

"(m) ds; < dsp (n)7 =
Stream p hs ds1 xs * $m =¢
Stream p h s dss xs
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Streams: Debit Subsumption

The debit subsumption judgement (whose definition is not shown)
(m) dSl S d52 (n)

implies
Vi. > (takeidsy) < m+ ) (takei dsy)

By paying m now,

one reduces the apparent cost of forcing the stream down to depth /
by at most m,

and this holds for every depth /.

When m is zero, this judgement moves debits towards the left.
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Questions

How can one construct these high-level reasoning rules, in Iris$,
by starting from first principles?

Let us now descend to the level of thunks.

Let us give formal statements of Okasaki’s reasoning rules
and see how to construct a predicate Thunk that satisfies these rules.
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hunks: Abstract Predicate

We would like a persistent assertion Thunk t n ¢.

More parameters are needed: p, £, R, but are not discussed in this talk.
Side conditions on namespaces and masks are omitted in the following slides.
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hunks: Creation

Creation costs O(1).

THUNK-CREATE
{$3 * isAction f n R ¢}

create f \\\

returns (dt) t { Thunk p F t n R ¢}

isAction f n R ¢ denotes the one-shot triple
1{R % $n} f() returns (Av) v {R * O ¢ v}

So, if the suspended computation costs n then the thunk has debit n.
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hunks: Debt Management

One can over-approximate an apparent debt.

THUNK-INCREASE-DEBT
"ng < ny'—= Thunk p F t ni R ¢ —

Thunk p F t no R ¢

THUNK-PAY
Thunk p FtnR ¢ x $k =¢

Thunk p Ft(n—k) R ¢

One can pay to reduce an apparent debt.
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hunks: Forcing

Provided the debt is zero, forcing costs O(1).

THUNK-FORCE
{Thunk p F tOR ¢ = $11 = #, * R}

force t
returns (3v) v {ThunkVal t v « O ¢ v * #, = R}

A token fpf is required.

A forced-thunk witness is produced.
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hunks: Forcing an Already-Forced

Forcing a thunk again costs O(1) even if its debt n is nonzero.

THUNK-FORCE-FORCED
{Thunk p F t n R ¢ = ThunkValt v = $11 = £}

force t
returns v {if}

The result v is the value predicted by the ThunkVal assertion.

The postcondition [] ¢ v is not obtained in this case.

hunk
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hunks: Consequence Rule

When ny is zero, this rule weakens a thunk's postcondition.

When ny # 0, it allows deep payment and strengthens the postcond.

THUNK-CONSEQUENCE
Thunk p F1t n R ¢ —

isUpdate no R ¢ ¢ =¢
Thunk p F t (n1 + ) R

isUpdate no R ¢ 1 denotes the ghost update
V. (R % $np «x Oov) =7 (R x Oy v)

A key rule, missing in our previous work (2019) and difficult to justify.
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Construction of Thunks: Overview

We construct the predicate Thunk in three stages.

@ basic thunks satisfy all rules except THUNK-CONSEQUENCE;
® proxy thunks support one application of THUNK-CONSEQUENCE;

© iterating this construction yields thunks
that support arbitrarily many applications of this rule.

Piggy banks, a ghost data structure, are used at levels 1 and 2.
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Piggy Banks: Principles

A piggy bank has two states: pending and forced,
described by two Iris assertions P nc and Q.

A piggy bank carries an apparent debt n.

Piggy banks involve no code.

Their reasoning rules reflect Okasaki's discipline:
® A target amount nc is fixed upon creation.

® One can pay and reduce the apparent debt in several increments.

e When the debt is 0, breaking the bank yields $nc
which can be used to pay for the transition of P nc to Q.

® A piggy bank is persistent.

31/46



Piggy Banks: Selected Reasoning Rules

Pi1GGYBANK-INCREASE-DEBT

PIGGYBANK-CREATE "n1 < ny = PiggyBank ny —x

P nc = ¢ PiggyBank nc
& riesy PiggyBank n»

P1GGYBANK-BREAK /OTW%
PIGGYBANK-PAY PiggyBank 0 f]-“

PiggyBank n * $k
Pl.ggyBankzv ) K) ~e e (> P nc * $nc) V > Q) * )
/ an n — .

i >Q=¢ £5)

Breaking the bank is a non-atomic process @i/ith two distinct steps:
opening and closing the bank. A unique token forbids reentrancy.

Paying does not require a token, so is permitted at all times.
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Piggy Banks: Internal Definition

Internally, a non-atomic invariant and an atomic invariant are used:
PiggyBank P Q Ap N n =

3, m, nc. Lo
©, T, NC o

dforced.
> e forced | x N
if ~forced then P ncelse @ |
dforced, ac. akemic
prsoforced | * im>eac x |7
f ~forced then $ac else "nc < ac”

iiiiiiiiiiiiiiij

iiiiiiiiiiiiiiiJ

They agree on the Boolean flag forced thanks to a shared ghost cell ¢.
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Basic Thunks: Internal Definition

A basic thunk involves a physical reference t and a piggy bank whose
parameters describe the pending and forced states of the thunk.

BasicThunk p Ftn R ¢ =
Jo, N.™N C F' % t~»>0 x PiggyBank

ng: (Anc. 3f. 16— 71 %t UNEVALUATED f x isAction f nc R ¢)

: (Av.id—= v x t— EVALUATED v % [0 ¢ v)

ThunkPayment p N n

ThunkVal t v =
36, t~ 0 xS v

Basic thunks satisfy the desired rules except THUNK-CONSEQUENCE.
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Why Consequence is Tricky

A reminder:

THUNK-CONSEQUENCE
Thunk p F1t ni R ¢ —
isUpdate no R ¢ ¢ =¢
Thunk p F t (m + n) R

Supporting this rule seems tricky, because

® it appears to set a new postcondition and a new target amount,

® vet these are fixed at construction time
by the invariants of piggy banks and basic thunks;

® furthermore, the old and new views of the thunk must coexist.
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An Intuition

Applying THUNK-CONSEQUENCE to a thunk t
is almost like constructing a new thunk t’
via the expression create (\(). force t).

If we actually created a new thunk,

we could set a new target amount and a new postcondition.

We need THUNK-CONSEQUENCE to be a ghost update
(this is absolutely necessary to allow deep payment)
and to not actually create a new thunk...

but it can create a new piggy bank.
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Proxy Thunks: Creation Rule

Based on this idea, we create a variant of the consequence rule
that transforms a basic thunk into a proxy thunk:

PROXY-CREATE
FiETN C F

PawcThunk p F1 t n1 R ¢ —

isUpdate no R ¢ ¢ =¢
ProxyThunk p F t (n1 + n2) R
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Proxy Thunks: Internal Definition

A proxy thunk is just a basic thunk together with a new piggy bank.

ProxyThunk p F t n R ¢ =
dny, no, ¢, F1, N. "FLWUTN C F' «
Thunk p F1t ni R¢ x
PiggyBank
(Anc. "nc = ny 4+ np" * isUpdate no R ¢ )
(Jv. ThunkVal t v x O ¢ v)
ThunkPayment p N n
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hunks: a Common API

Proxy thunks enjoy the same reasoning rules as basic thunks.

The “common thunk API",
® all rules except THUNK-CREATE and THUNK-CONSEQUENCE,

is the same for basic thunks and proxy thunks.
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lterating the Construction

We have built proxy thunks on top basic thunks.

The construction works on top of an arbitrary flavor of thunks
provided they satisfy the common API,
and produces a new flavor that again satisfy the common API.

Iterating the construction allows building

® basic thunks,
® proxy thunks that wrap basic thunks,
® proxy thunks that wrap proxy thunks that wrap basic thunks, etc.

The fixed point satisfies the common API plus THUNK-CREATE and
THUNK-CONSEQUENCE, that is, the full desired API.
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hunks: Internal Definition

Here is a possible definition of the greatest fixed point:

Thunk p FtnR ¢ =
AThunk. N, d, F'.
Thunk is persistent x
Thunk satisfies the common thunk APl x
vVd'.d<d = F #H(N-d)7
"FCAN C F7ox
Thunk p F' t n R ¢

An inductive definition is also possible.
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Conclusion

A new result in a beautiful line of work:

® Okasaki (1999)
® Danielsson (2008)
® Mével et al. (2019)

In the paper:

e forbidding reentrancy by indexing thunks with heights;

® specs for operations on streams; machine-checked proofs; etc.
Future work:

® engineering work required to make Iris® more user-friendly.
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Piggy Banks: the Ghost Cell ¢

The cell is owned by exactly two participants.
One token suffices to know the content of the cell.

The two participants always agree on the content:

777777777777777777777777777777

7**7******7**7 7**7******7**7

—_— e — — 4 —_— e — — 4 —_— e —_— e
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Piggy Banks: the Ghost Cell 7

There is one authoritative view and many fragmentary views of the cell.

iiiiiiiiiiiiiiiiiiiiiiiiii

— —_— e — 4
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hunks: Forced-Thunk Witnesses

THUNKVAL-CONFRONT
ThunkVal t vi x ThunkVal t vo =" v = vp
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Height-Indexed Thunks: Selected Rules

A thunk can force thunks of lesser height only.

HTHUNK-CREATE HTHUNK-INC-HEIGHT-DEBT
{$3 * isAction f n (!Z) ¢} Thy < hy ' =Ty < ny ! =
create f HThunk p hy t ny ¢ —

returns (dt) t {HThunk p h t n ¢} HThunk p hy t ny ¢

HTHUNK-FORCE

{HThunk p ht0 ¢ + $11 = #% x Th< H"}
force t

returns (Jv) v {Od ¢ v * ThunkVal t v x fgl}

This height-based discipline is simpler than the mask-based discipline
shown earlier.
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Streams: the Predicate Stream

Here is the general form of the predicate Stream:

Stream p h s ds xs
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Streams: Definition

The definition is straightforward:

Streamp hs || xs = False

A

Streamp hs (d::ds) xs =
HThunk p hs d (Ac.StreamCell p h c ds xs)
StreamCell phcds[] £ Tc=Nil7 * "ds=1]"

A

StreamCell p h c ds (x :: xs) =

ds. "c = Cons(x,s)” x Stream p hs ds xs
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Streams: Creation

Constructing a stream costs O(1).

STREAM-CREATE
{$5 x isCellAction p h d e ds xs}

create (A().e)
returns (3s) s {Stream p hs (d :: ds) xs}

isCellAction p h d e ds xs denotes the one-shot triple

1 {!Z x $d} e returns (dc) ¢ {StreamCell p h c ds xs x fg}
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Streams: Forcing

Provided the head debit is zero, forcing a stream costs O(1).

STREAM-FORCE
{ Stream p hs (0::ds) xs }

$11  £7 x Th< K7
force s
StreamCell p h c ds xs }

returns (dc) ¢ b
ThunkVal's ¢ x 7,
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Streams: Specifications of revl and append

revl constructs one expensive thunk followed with n cheap thunks.

STREAM-REVL
{List I xs * $13 % "n=|xs|}

revl |
returns (ds) s {Stream p h's (19n::0") (rev xs)}

STREAM-APPEND
{Stream p h s; dsy xs1 * Stream p h s, dsp xsp * $8}

append s1 s
returns (3ds) s {Stream p (h+ 1) s (ds1 <1 dsy) (xs1 ++ xs2)}

append joins dsi and ds, using the debit join operator <.
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Streams: Definition of Debit Join

Debit join > can be defined as follows:

(dSl +—+ [dl]) D> (d2 ' dSz) £
map (A+ _)ds1 ++ (A+di+ B+ dy) :: dso

where A 2 30 and B £ 11.
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Streams: Debit Subsumption: Definition

SUB-NIL SUB-CONS
n<m di < m+ do (m+ d> — dp) ds1 < dsp (n)

(m)[] <] (n) (m) di ::dsy < dy:: dsy (n)
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Streams: Debit Subsumption: Reasoning Rules

SUB-VARIANCE SUB-TRANS
(m) dSl < d52 (n) (ml) dSl < d52 (nl)
m<m n <n (my) dsy < ds3 (no)
(m") dsy < ds, (n') (my + my) ds; < ds3 (n1 + o)
SUB-APPEND
(m) ds; < dsa (n) SUB-ADD-SLACK
(n) ds§ < ds,, (k) (m) ds; < ds» (n)

(m) ds; ++ dsll < dsy ++ d5/2 (k) (m—+ k) dsy < dsy (n+ k)

SUB-REPEAT
di < d SUB-REFL

(m) ds < ds (m)

(0) di < dy (n x (d2 — di))
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he Banker's Queue: Specification of check

BANKER-CHECK
{$48 * BQueueRaw p q fsrs x "|rs| < |fs| + 17}

check q
returns (3q") ¢’ {BQueue p q' (fs ++ rev rs)}
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