
A Fistful of Dollars:
Formalizing Asymptotic Complexity Claims via
Deductive Program Verification

Armaël Guéneau, Arthur Charguéraud, François Pottier

Inria

1/21

Motivational example: binary search

Claim: “binary search finds an element in time 𝑂(log𝑛)”

Goal: formalize this claim in Coq for a concrete implementation

2/21

Functional correctness

let rec bsearch (a: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = a.(k) then k
else if v < a.(k) then bsearch a v i k
else bsearch a v (i+1) j

• We can test this program• We can prove functional correctness (Why3, CFML, ...)

3/21

Functional correctness

let rec bsearch (a: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = a.(k) then k
else if v < a.(k) then bsearch a v i k
else bsearch a v (i+1) j

• We can test this program• We can prove functional correctness (Why3, CFML, ...)

3/21

Yet, there is a bug

(* search for v in the range [i, j) *)
let rec bsearch (a: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = a.(k) then k
else if v < a.(k) then bsearch a v i k
else bsearch a v (i+1) j

Can you spot the bug?

4/21

Yet, there is a bug

(* search for v in the range [i, j) *)
let rec bsearch (a: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = a.(k) then k
else if v < a.(k) then bsearch a v i k
else bsearch a v (i+1) j

Can you spot the complexity bug?

4/21

Yet, there is a bug

(* search for v in the range [i, j) *)
let rec bsearch (a: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = a.(k) then k
else if v < a.(k) then bsearch a v i k
else bsearch a v (i+1) j

buggy, should be k+1

Can you spot the complexity bug?

4/21

In this talk

Goal: prove OCaml programs, including their asymptotic
complexity expressed with 𝑂() bounds

State of the art:

• Automatic inference for polynomial bounds• Interactive proofs using time credits,
e.g. “bsearch costs 3 log𝑛 + 4”

Issue: conciseness, and modularity of specifications

5/21

In this talk (2)

Solution: introduce the 𝑂() notation for conciseness and
modularity

Challenges:

• How to write specifications?

• What is the meaning of 𝑂() in the multivariate case?

• How to do proofs (paper proofs are too informal)?

• How to automate the cost analysis?

6/21

Separation Logic with Time Credits

Time Credits: resources in separation logic

• Each function call (or loop iteration) consumes $1• $𝑛 asserts the ownership of 𝑛 time credits• $(𝑛 + 𝑚) = $𝑛 ∗ $𝑚• Credits are not duplicable: $1 ⟹/ $1 ∗ $1• Enables amortized analysis

References:

• Atkey (2011): time credits in Separation Logic• Charguéraud & Pottier (2015): practical verification
framework (CFML), applied to Union-Find

7/21

Example of using time credits

A specification of the complexity of bsearch:

∀𝑖 𝑗 𝑎 𝑣.
{ $(3 log(𝑗 − 𝑖) + 4) ∗ … } (bsearch a v i j) { … }

• Conciseness issue: even non dominant terms must appear

• Modularity issue: changing (even slightly) bsearch
requires updating the specification, and all proofs that
depend on it.

• Tempting: { $𝑂(𝑙𝑜𝑔(𝑗 − 𝑖)) ∗ … } (bsearch a v i j) { … }

8/21

Example of using time credits

A specification of the complexity of bsearch:

∀𝑖 𝑗 𝑎 𝑣.
{ $(3 log(𝑗 − 𝑖) + 4) ∗ … } (bsearch a v i j) { … }

• Conciseness issue: even non dominant terms must appear

• Modularity issue: changing (even slightly) bsearch
requires updating the specification, and all proofs that
depend on it.

• Tempting: { $𝑂(𝑙𝑜𝑔(𝑗 − 𝑖)) ∗ … } (bsearch a v i j) { … }

8/21

Example of using time credits

A specification of the complexity of bsearch:

∀𝑖 𝑗 𝑎 𝑣.
{ $(3 log(𝑗 − 𝑖) + 4) ∗ … } (bsearch a v i j) { … }

• Conciseness issue: even non dominant terms must appear

• Modularity issue: changing (even slightly) bsearch
requires updating the specification, and all proofs that
depend on it.

• Tempting: { $𝑂(𝑙𝑜𝑔(𝑗 − 𝑖)) ∗ … } (bsearch a v i j) { … }

8/21

Example of using time credits

A specification of the complexity of bsearch:

∀𝑖 𝑗 𝑎 𝑣.
{ $(3 log(𝑗 − 𝑖) + 4) ∗ … } (bsearch a v i j) { … }

• Conciseness issue: even non dominant terms must appear

• Modularity issue: changing (even slightly) bsearch
requires updating the specification, and all proofs that
depend on it.

• Tempting: { $𝑂(𝑙𝑜𝑔(𝑗 − 𝑖)) ∗ … } (bsearch a v i j) { … }

8/21

Challenges in reasoning with 𝑂

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = a.(k) then k
5 else if v < a.(k) then
6 bsearch a v i k
7 else
8 bsearch a v (k+1) j

“Claim”:
bsearch a v i j costs

𝑂(1).

Proof:
By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) + 𝑂(1) + 𝑂(1) = 𝑂(1). OK!

…but which statement are we proving?

9/21

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = a.(k) then k
5 else if v < a.(k) then
6 bsearch a v i k
7 else
8 bsearch a v (k+1) j

“Claim”:
bsearch a v i j costs

𝑂(1).

Proof:

By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) + 𝑂(1) + 𝑂(1) = 𝑂(1). OK!

…but which statement are we proving?

9/21

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = a.(k) then k
5 else if v < a.(k) then
6 bsearch a v i k
7 else
8 bsearch a v (k+1) j

“Claim”:
bsearch a v i j costs

𝑂(1).

Proof:
By induction on 𝑗 − 𝑖:

• 𝑗 − 𝑖 ≤ 0: 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) + 𝑂(1) + 𝑂(1) = 𝑂(1). OK!

…but which statement are we proving?

9/21

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = a.(k) then k
5 else if v < a.(k) then
6 bsearch a v i k
7 else
8 bsearch a v (k+1) j

“Claim”:
bsearch a v i j costs

𝑂(1).

Proof:
By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: 𝑂(1). OK!

• 𝑗 − 𝑖 > 0: 𝑂(1) + 𝑂(1) + 𝑂(1) = 𝑂(1). OK!

…but which statement are we proving?

9/21

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = a.(k) then k
5 else if v < a.(k) then
6 bsearch a v i k
7 else
8 bsearch a v (k+1) j

“Claim”:
bsearch a v i j costs

𝑂(1).

Proof:
By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) + 𝑂(1) + 𝑂(1) = 𝑂(1). OK!

…but which statement are we proving?

9/21

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = a.(k) then k
5 else if v < a.(k) then
6 bsearch a v i k
7 else
8 bsearch a v (k+1) j

“Claim”:
bsearch a v i j costs

𝑂(1).

Proof:
By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) + 𝑂(1) + 𝑂(1) = 𝑂(1). OK!

Where is the mistake?

…but which statement are we proving?

9/21

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = a.(k) then k
5 else if v < a.(k) then
6 bsearch a v i k
7 else
8 bsearch a v (k+1) j

“Claim”:
bsearch a v i j costs

𝑂(1).

Proof:
By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) + 𝑂(1) + 𝑂(1) = 𝑂(1). OK!

…but which statement are we proving?

9/21

Meaning of 𝑂(1)

What we just proved:

∀𝑖 𝑗, ∃ 𝑐, bsearch a v i j runs in 𝑐 steps

What “𝑂(1)” means:

∃ 𝑐, ∀𝑖 𝑗, bsearch a v i j runs in 𝑐 steps

10/21

Meaning of 𝑂(1)

What we just proved:

∀𝑖 𝑗, ∃ 𝑐, bsearch a v i j runs in 𝑐 steps

What “𝑂(1)” means:

∃ 𝑐, ∀𝑖 𝑗, bsearch a v i j runs in 𝑐 steps

10/21

Meaning of 𝑂(log𝑛)

“bsearch a v i j runs in 𝑂(log(𝑗 − 𝑖)) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
bsearch a v i j runs in 𝑓 (𝑗 − 𝑖) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
{ $𝑓 (𝑗 − 𝑖) ∗ … } (bsearch a v i j) { … }”.

• Meaning of “𝑓 ∈ 𝑂(𝑔)”?• How to provide a witness for 𝑓 ?

11/21

Meaning of 𝑂(log𝑛)

“bsearch a v i j runs in 𝑂(log(𝑗 − 𝑖)) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
bsearch a v i j runs in 𝑓 (𝑗 − 𝑖) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
{ $𝑓 (𝑗 − 𝑖) ∗ … } (bsearch a v i j) { … }”.

• Meaning of “𝑓 ∈ 𝑂(𝑔)”?• How to provide a witness for 𝑓 ?

11/21

Meaning of 𝑂(log𝑛)

“bsearch a v i j runs in 𝑂(log(𝑗 − 𝑖)) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
bsearch a v i j runs in 𝑓 (𝑗 − 𝑖) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
{ $𝑓 (𝑗 − 𝑖) ∗ … } (bsearch a v i j) { … }”.

• Meaning of “𝑓 ∈ 𝑂(𝑔)”?• How to provide a witness for 𝑓 ?

11/21

Meaning of 𝑂(log𝑛)

“bsearch a v i j runs in 𝑂(log(𝑗 − 𝑖)) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
bsearch a v i j runs in 𝑓 (𝑗 − 𝑖) steps.”

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
{ $𝑓 (𝑗 − 𝑖) ∗ … } (bsearch a v i j) { … }”.

• Meaning of “𝑓 ∈ 𝑂(𝑔)”?• How to provide a witness for 𝑓 ?

11/21

A generic definition of 𝑂

Definition of 𝑂

• Single variable case:

𝑓 ∈ 𝑂(𝑔) ≡ ∃𝑐, ∃𝑛0, ∀𝑛 ≥ 𝑛0, |𝑓 (𝑛)| ≤ 𝑐 |𝑔(𝑛)|

with 𝑓 of type ℕ → ℤ

• Multivariate case: 𝑓 of type ℕ𝑘 → ℤ

• In our library: 𝑓 of type 𝐴 → ℤ, with a filter on type 𝐴

12/21

𝑂 as a relation between functions

We define 𝑂 as a domination pre-order between functions of 𝐴
to ℤ:

𝑓 ⪯𝐴 𝑔 ≡ ∃𝑐. 𝕌𝐴 𝑥. |𝑓 (𝑥)| ≤ 𝑐 |𝑔(𝑥)|

𝐴 must be equipped with a filter 𝕌𝐴

• “𝕌𝐴𝑥.𝑃”: “ultimately P” / “P holds of every sufficiently large 𝑥”• Can be thought of as a quantifier• A standard notion in math (see e.g. Bourbaki)• We prove in our library many properties of ⪯𝐴 for an
arbitrary filtered type 𝐴

13/21

𝑂 as a relation between functions

We define 𝑂 as a domination pre-order between functions of 𝐴
to ℤ:

𝑓 ⪯𝐴 𝑔 ≡ ∃𝑐. 𝕌𝐴 𝑥. |𝑓 (𝑥)| ≤ 𝑐 |𝑔(𝑥)|

𝐴 must be equipped with a filter 𝕌𝐴

• “𝕌𝐴𝑥.𝑃”: “ultimately P” / “P holds of every sufficiently large 𝑥”• Can be thought of as a quantifier

• A standard notion in math (see e.g. Bourbaki)• We prove in our library many properties of ⪯𝐴 for an
arbitrary filtered type 𝐴

13/21

𝑂 as a relation between functions

We define 𝑂 as a domination pre-order between functions of 𝐴
to ℤ:

𝑓 ⪯𝐴 𝑔 ≡ ∃𝑐. 𝕌𝐴 𝑥. |𝑓 (𝑥)| ≤ 𝑐 |𝑔(𝑥)|

𝐴 must be equipped with a filter 𝕌𝐴

• “𝕌𝐴𝑥.𝑃”: “ultimately P” / “P holds of every sufficiently large 𝑥”• Can be thought of as a quantifier• A standard notion in math (see e.g. Bourbaki)• We prove in our library many properties of ⪯𝐴 for an
arbitrary filtered type 𝐴

13/21

Proving specifications: automatic
(guided) cost synthesis

Providing the cost function

“there exists a cost function 𝑓 ∈ 𝑂(log𝑛) such that,
for every a, v, i, j,
{ $𝑓 (𝑗 − 𝑖) ∗ … } (bsearch a v i j) { … }”.

becomes

∃𝑓 ∶ ℤ → ℤ.
⎧{
⎨{⎩

𝑓 ⪯ℤ 𝜆𝑛. log𝑛
∀𝑖 𝑗 𝑎 𝑣. { $𝑓 (𝑗 − 𝑖) ∗ … } (bsearch a v i j) { … }

• First step of the proof: exhibit a concrete cost function.
Guess “𝜆𝑛. 3 log 𝑛 + 4” from the start?• It seems desirable to (semi) automatically construct the
witness as the proof progresses.

14/21

Our approach to this problem

• Convince Coq to postpone the moment where the concrete
cost function is provided

• Progressively synthesize the cost function while applying
the reasoning rules from separation logic

• The synthesized function has the same structure as the
code

• Afterwards, prove a 𝑂() bound for the cost function

15/21

Our approach to this problem

• Convince Coq to postpone the moment where the concrete
cost function is provided

• Progressively synthesize the cost function while applying
the reasoning rules from separation logic

• The synthesized function has the same structure as the
code

• Afterwards, prove a 𝑂() bound for the cost function

15/21

Our approach to this problem

• Convince Coq to postpone the moment where the concrete
cost function is provided

• Progressively synthesize the cost function while applying
the reasoning rules from separation logic

• The synthesized function has the same structure as the
code

• Afterwards, prove a 𝑂() bound for the cost function

15/21

Our approach to this problem

• Convince Coq to postpone the moment where the concrete
cost function is provided

• Progressively synthesize the cost function while applying
the reasoning rules from separation logic

• The synthesized function has the same structure as the
code

• Afterwards, prove a 𝑂() bound for the cost function

15/21

let rec bsearch a v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f n := 1 + (
if n <= 0 then 0 else
0 + 1 + max 0 (
1 + max (f (n/2))

(f (n - n/2 - 1))
)

)
where n = j-i

16/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + …

a hole (“…”) is implemented as an evar in Coq

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (if j <= i then … else …)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (if j <= i then … else …)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (if (j-i) <= 0 then … else …)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (if (j-i) <= 0 then 0 else …)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + …

)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + …

)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max … …

)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 …

)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (1 + …)

)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (1 + max … …)

)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (
1 + max (f ((j-i)/2)) …

)
)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f (j-i) := 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (
1 + max (f ((j-i)/2))

(f ((j-i) - (j-i)/2 - 1))
)

)

17/21

if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then

bsearch a v i k
else

bsearch a v (k+1) j

f n := 1 + (
if n <= 0 then 0 else
0 + 1 + max 0 (
1 + max (f (n/2))

(f (n - n/2 - 1))
)

)

17/21

Our cost synthesis achieves the following objectives:

• The user inspects the code only once• The user can guide the synthesis of the cost function

18/21

Summary

Separation Logic
with Time Credits

This work
Modular specifications
using O() and filters

Better automation for proofs with
time credits: cost function synthesis

19/21

Closely related work

• Howell (2008), in his book, studies properties and
difficulties of 𝑂() with multiple variables.

• In Isabelle/HOL: Zhan & Haslbeck (2018) implement the
same formal framework, with strong focus on automation
but no “cost function synthesis”. They build on Eberl’s
(2017) impressive formalization of the Akra-Bazzi theorem.

• Hoffmann et al. (2010-2017): automated amortized
resource analysis for OCaml. Implemented by
Carbonneaux, Hoffmann & Shao (2015) with proof
certificates checked by Coq.

20/21

More in the paper:

• Details about side-conditions for cost functions:
monotonic and non-negative• Clear up some confusion about multivariate 𝑂()• Variable substitution in multivariate specifications• Other case studies: selection sort, Bellman-Ford,
Union-Find

http://gallium.inria.fr/~agueneau/bigO

Challenging case studies in the works!

21/21

http://gallium.inria.fr/~agueneau/bigO

	Separation Logic with Time Credits
	Challenges in reasoning with O
	A generic definition of O
	Proving specifications: automatic (guided) cost synthesis

