A Fistful of Dollars: Formalizing Asymptotic Complexity Claims via Deductive Program Verification

Armaël Guéneau, Arthur Charguéraud, François Pottier Inria

Motivational example: binary search

Claim: "binary search finds an element in time $O(\log n)$ "
Goal: formalize this claim in Coq for a concrete implementation

Functional correctness

```
let rec bsearch (a: int array) v i j =
        if j <= i then -1 else
        let k = i + (j - i) / 2 in
        if v = a.(k) then k
        else if v < a.(k) then bsearch a v i k
        else bsearch a v (i+1) j
```

- We can test this program
- We can prove functional correctness (Why3, CFML, ...)

Functional correctness

```
let rec bsearch (a: int array) v i j =
        if j <= i then -1 else
        let k = i + (j - i) / 2 in
        if v = a.(k) then k
        else if v < a.(k) then bsearch a v i k
        else bsearch a v (i+1) j
```

- We can test this program
- We can prove functional correctness (Why3, CFML, ...)

Yet, there is a bug

```
(* search for \(v\) in the range [i, j) *)
let rec bsearch (a: int array) vi j =
    if \(j<=i\) then -1 else
    let \(\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2\) in
    if \(v=a .(k)\) then \(k\)
    else if \(v<a .(k)\) then bsearch a vik
    else bsearch a v (i+1) j
```

Can you spot the bug?

Yet, there is a bug

```
(* search for \(v\) in the range [i, j) *)
let rec bsearch (a: int array) vi j =
    if \(j<=i\) then -1 else
    let \(\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2\) in
    if \(v=a .(k)\) then \(k\)
    else if \(v<a .(k)\) then bsearch a vik
    else bsearch a v (i+1) j
```

Can you spot the complexity bug?

Yet, there is a bug

```
(* search for \(v\) in the range [i, j) *)
let rec bsearch (a: int array) vi j =
    if \(j<=i\) then -1 else
    let \(\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2\) in
    if \(v=a .(k)\) then \(k\)
    else if \(v<a .(k)\) bsearch a \(v i k\)
    else bsearch a v(i+1) j
```

 buggy, should be k+1
 Can you spot the complexity bug?

In this talk

Goal: prove OCaml programs, including their asymptotic complexity expressed with O () bounds

State of the art:

- Automatic inference for polynomial bounds
- Interactive proofs using time credits, e.g. "bsearch costs $3 \log n+4$ "

Issue: conciseness, and modularity of specifications

In this talk (2)

Solution: introduce the $O()$ notation for conciseness and modularity

Challenges:

- How to write specifications?
- What is the meaning of $O()$ in the multivariate case?
- How to do proofs (paper proofs are too informal)?
- How to automate the cost analysis?

Separation Logic with Time Credits

Time Credits: resources in separation logic

- Each function call (or loop iteration) consumes $\$ 1$
- $\$ n$ asserts the ownership of n time credits
- $\$(n+m)=\$ n * \$ m$
- Credits are not duplicable: $\$ 1 \nRightarrow \$ 1 * \$ 1$
- Enables amortized analysis

References:

- Atkey (2011): time credits in Separation Logic
- Charguéraud \& Pottier (2015): practical verification framework (CFML), applied to Union-Find

Example of using time credits

A specification of the complexity of bsearch:
$\forall i j a v$.

$$
\{\$(3 \log (j-i)+4) * \ldots\} \text { (bsearch a } \vee \text { i } j)\{\ldots\}
$$

Example of using time credits

A specification of the complexity of bsearch:

$$
\begin{aligned}
& \forall i j a v . \\
& \quad\{\$(3 \log (j-i)+4) * \ldots\} \text { (bsearch a v i } j)\{\ldots\}
\end{aligned}
$$

- Conciseness issue: even non dominant terms must appear

Example of using time credits

A specification of the complexity of bsearch:

$$
\begin{aligned}
& \forall i j a v . \\
& \quad\{\$(3 \log (j-i)+4) * \ldots\} \text { (bsearch a v i } j)\{\ldots\}
\end{aligned}
$$

- Conciseness issue: even non dominant terms must appear
- Modularity issue: changing (even slightly) bsearch requires updating the specification, and all proofs that depend on it.

Example of using time credits

A specification of the complexity of bsearch:

$$
\begin{aligned}
& \forall i j a v . \\
& \qquad\{\$(3 \log (j-i)+4) * \ldots\} \text { (bsearch a v i } j)\{\ldots\}
\end{aligned}
$$

- Conciseness issue: even non dominant terms must appear
- Modularity issue: changing (even slightly) bsearch requires updating the specification, and all proofs that depend on it.
- Tempting: $\{\$ O(\log (j-i)) * \ldots\}$ (bsearch a v i j) $\{\ldots\}$

Challenges in reasoning with O

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if $\mathrm{j}<=\mathrm{i}$ then -1 else
3 let $\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2$ in
4 if $v=a .(k)$ then k
5
6
else if v < a.(k) then
bsearch a v i j costs
bsearch a v i k
else
bsearch a v (k+1) j
"Claim":
$O(1)$.

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if $j<=i$ then -1 else

5
6

3 let $\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2$ in
4 if $v=a .(k)$ then k
else if $v<a .(k)$ then
bsearch a v i j costs bsearch a v i k
else
bsearch a v (k+1) j
"Claim":
$O(1)$.

Proof:

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if $j<=i$ then -1 else

5
6

3 let $\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2$ in
4 if $v=a .(k)$ then k
else if $v<a .(k)$ then
bsearch a v i j costs
bsearch a v i k
else
bsearch a v (k+1) j
"Claim":
$O(1)$.

Proof:
By induction on $j-i$:

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if $j<=i$ then -1 else
3 let $\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2$ in
4 if $v=a .(k)$ then k
5
6
else if $v<a .(k)$ then
bsearch a v i j costs
bsearch a v i k
else
bsearch a v (k+1) j
"Claim":
$O(1)$.

Proof:
By induction on $j-i$:

- $j-i \leq 0: O(1)$. OK!

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if $j<=i$ then -1 else
3 let $\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2$ in
4 if $v=a .(k)$ then k
5
6
else if $v<a .(k)$ then
bsearch a v i j costs
bsearch a v i k
$O(1)$.
else
bsearch a v (k+1) j
"Claim":

Proof:
By induction on $j-i$:

- $j-i \leq 0: O(1)$. OK!
- $j-i>0: O(1)+O(1)+O(1)=O(1)$. OK!

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if $j<=i$ then -1 else
3 let $\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2$ in
4 if $v=a .(k)$ then k
5
6
else if $v<a .(k)$ then
bsearch a v i j costs bsearch a v i k $O(1)$.

Proof:
By induction on $j-i$:
Where is the mistake?

- $j-i \leq 0: O(1)$. OK!
- $j-i>0: O(1)+O(1)+O(1)=O(1)$. OK!

Informal reasoning principles can be abused

1 let rec bsearch a v i j =
2 if $j<=i$ then -1 else
3 let $\mathrm{k}=\mathrm{i}+(\mathrm{j}-\mathrm{i}) / 2$ in
4 if $v=a .(k)$ then k
5
6
else if $v<a .(k)$ then
bsearch a v i j costs bsearch a v i k $O(1)$.
else
bsearch a v (k+1) j
"Claim":

Proof:
By induction on $j-i$: ...but which statement are we proving?

- $j-i \leq 0: O(1)$. OK!
- $j-i>0: O(1)+O(1)+O(1)=O(1)$. OK!

Meaning of $O(1)$

What we just proved:
$\forall i j, \exists c$, bsearch a vi jrunsincsteps

Meaning of $O(1)$

What we just proved:
$\forall i j, \exists c$, bsearch a vii \quad runsincsteps

What " $O(1)$ " means:

$$
\exists c, \forall i j, \text { bsearch a v i } j \text { runsin } c \text { steps }
$$

Meaning of $O(\log n)$

"bsearch a v i j runsin $O(\log (j-i))$ steps."

Meaning of $O(\log n)$

"bsearch a v i j runsin $O(\log (j-i))$ steps."
"there exists a cost function $f \in O(\log n)$ such that, for every a, v, i, j,
bsearch a v i jrunsin $f(j-i)$ steps."

Meaning of $O(\log n)$

"bsearch a v i j runsin $O(\log (j-i))$ steps."
"there exists a cost function $f \in O(\log n)$ such that, for every a, v, i, j,
bsearch a v i jrunsin $f(j-i)$ steps."
"there exists a cost function $f \in O(\log n)$ such that, for every a, v, i, j,
$\{\$ f(j-i) * \ldots\}$ (bsearch a vij) $\{\ldots\}$ ".

Meaning of $O(\log n)$

"bsearch a v i j runsin $O(\log (j-i))$ steps."
"there exists a cost function $f \in O(\log n)$ such that, for every $\mathrm{a}, \mathrm{v}, \mathrm{i}, \mathrm{j}$, bsearch a v i jrunsin $f(j-i)$ steps."
"there exists a cost function $f \in O(\log n)$ such that, for every $\mathrm{a}, \mathrm{v}, \mathrm{i}, \mathrm{j}$, $\{\$ f(j-i) * \ldots\}$ (bsearch a $\vee \mathrm{i} j$) $\{\ldots\}^{\prime \prime}$.

- Meaning of " $f \in O(g)$ "?
- How to provide a witness for f ?

A generic definition of O

Definition of O

- Single variable case:

$$
f \in O(g) \quad \equiv \quad \exists c, \exists n_{0}, \forall n \geq n_{0},|f(n)| \leq c|g(n)|
$$

with f of type $\mathbb{N} \rightarrow \mathbb{Z}$

- Multivariate case: f of type $\mathbb{N}^{k} \rightarrow \mathbb{Z}$
- In our library: f of type $A \rightarrow \mathbb{Z}$, with a filter on type A

O as a relation between functions

We define O as a domination pre-order between functions of A to \mathbb{Z} :

$$
f \leq_{A} g \equiv \exists c \cdot \mathbb{U}_{A} x \cdot|f(x)| \leq c|g(x)|
$$

A must be equipped with a filter \mathbb{U}_{A}

O as a relation between functions

We define O as a domination pre-order between functions of A to \mathbb{Z} :

$$
f \leq_{A} g \equiv \exists c \cdot \mathbb{U}_{A} x \cdot|f(x)| \leq c|g(x)|
$$

A must be equipped with a filter \mathbb{U}_{A}

- " $\mathbb{U}_{A} x . P$ ": "ultimately P" /"P holds of every sufficiently large x "
- Can be thought of as a quantifier

O as a relation between functions

We define O as a domination pre-order between functions of A to \mathbb{Z} :

$$
f \leq_{A} g \equiv \exists c \cdot \mathbb{U}_{A} x \cdot|f(x)| \leq c|g(x)|
$$

A must be equipped with a filter \mathbb{U}_{A}

- " $\mathbb{U}_{A} x . P$ ": "ultimately P" /"P holds of every sufficiently large x "
- Can be thought of as a quantifier
- A standard notion in math (see e.g. Bourbaki)
- We prove in our library many properties of \leq_{A} for an arbitrary filtered type A

Proving specifications: automatic (guided) cost synthesis

Providing the cost function

"there exists a cost function $f \in O(\log n)$ such that, for every $\mathrm{a}, \mathrm{v}, \mathrm{i}, \mathrm{j}$,
$\{\$ f(j-i) * \ldots\}$ (bsearch a $\vee \mathrm{i} j$) $\{\ldots\}^{\prime \prime}$.
becomes

$$
\begin{aligned}
& \exists f: \mathbb{Z} \rightarrow \mathbb{Z} . \\
& \qquad\left\{\begin{array}{l}
f \leq \mathbb{Z} \lambda n \cdot \log n \\
\forall i j a v \cdot\{\$ f(j-i) * \ldots\} \text { (bsearch a } v i \operatorname{j})\{\ldots\}
\end{array}\right.
\end{aligned}
$$

- First step of the proof: exhibit a concrete cost function. Guess " λn. $3 \log n+4$ " from the start?
- It seems desirable to (semi) automatically construct the witness as the proof progresses.

Our approach to this problem

- Convince Coq to postpone the moment where the concrete cost function is provided

Our approach to this problem

- Convince Coq to postpone the moment where the concrete cost function is provided
- Progressively synthesize the cost function while applying the reasoning rules from separation logic

Our approach to this problem

- Convince Coq to postpone the moment where the concrete cost function is provided
- Progressively synthesize the cost function while applying the reasoning rules from separation logic
- The synthesized function has the same structure as the code

Our approach to this problem

- Convince Coq to postpone the moment where the concrete cost function is provided
- Progressively synthesize the cost function while applying the reasoning rules from separation logic
- The synthesized function has the same structure as the code
- Afterwards, prove a $O()$ bound for the cost function
let rec bsearch a v i j =
if $j<=1$ then -1 else
let k = i + (j - i) / 2 in
if $v=$ Array.get a k then k
else if v < Array.get a k then
bsearch a v i k
else
bsearch a v (k+1) j

```
f n := 1 + (
    if n <= 0 then 0 else
            0 + 1 + max 0 (
            1 + max (f (n/2))
                                (f (n - n/2 - 1))
            )
    )
where n = j-i
```

$$
\begin{aligned}
& \text { if } j<=\text { i then }-1 \text { else } \\
& \text { let } k=1+(j-i) / 2 \text { in } \\
& \text { if v }=\text { Array.get a k then } k \\
& \text { else if } v<\text { Array.get a k then } \\
& \text { bsearch a v i k } \\
& \text { else } \\
& \text { bsearch a v (k+1) j }
\end{aligned}
$$

$$
f(j-i):=1+\ldots
$$

a hole ("...") is implemented as an evar in Coq

```
if \(j<=\) i then -1 else
    let \(k=i+(j-i) / 2 i n\)
    if \(v=\) Array.get \(a k\) then \(k\)
    else if v < Array.get a k then
    bsearch a v i k
    else
        bsearch a v (k+1) j
```

 f (j-i) := \(1+(i f\) j \(<=\) i then ... else ...)
 $$
\begin{aligned}
& \text { if } j<=i \text { then }-1 \text { else } \\
& \text { let } k=1+(j-i) / 2 \text { in } \\
& \text { if } v=\text { Array.get a k then } k \\
& \text { else if } v<\text { Array.get a k then } \\
& \text { bsearch a v i k } \\
& \text { else } \\
& \text { bsearch a v }(k+1) j
\end{aligned}
$$

$$
f(j-i):=1+(i f j\rangle=i \text { then ... else ...) }
$$

```
if \(j<=\) i then -1 else
    let \(k=i+(j-i) / 2 i n\)
    if \(v=\) Array.get \(a k\) then \(k\)
    else if v < Array.get a k then
    bsearch a v i k
    else
        bsearch a v (k+1) j
```

 f (j-i) := \(1+(i f(j-i)<=0\) then ... else ...)
 $$
\begin{aligned}
& \text { if } j<=\text { i then }-1 \text { else } \\
& \text { let } k=i+(j-i) / 2 \text { in } \\
& \text { if } v=\text { Array.get a k then } k \\
& \text { else if v < Array.get a k then } \\
& \text { bsearch a v i k } \\
& \text { else } \\
& \text { bsearch a v (k+1) j }
\end{aligned}
$$

 f (j-i) := \(1+(i f(j-i)<=0\) then 0 else ...)
    ```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
    bsearch a v i k
    else
        bsearch a v (k+1) j
```

```
\(f(j-i):=1+(\)
    if (j-i) <= 0 then 0 else
        0 + ...
)
```

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
    bsearch a v i k
    else
        bsearch a v (k+1) j
```

$$
\begin{aligned}
f(j-i):= & 1+(\\
& \quad \text { if }(j-i)<=0 \text { then } 0 \text { else } \\
& 0+1+\ldots
\end{aligned}
$$

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
    bsearch a v i k
    else
        bsearch a v (k+1) j
```

$$
\begin{aligned}
f(j-i):= & 1 \\
& +(\\
& i f(j-i)<=0 \text { then } 0 \text { else } \\
& 0+1+\max \ldots \ldots
\end{aligned}
$$

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
    bsearch a v i k
    else
        bsearch a v (k+1) j
```

$$
\begin{aligned}
f(j-i):= & 1 \\
& +(\\
& i f(j-i)<=0 \text { then } 0 \text { else } \\
& 0+1+\max 0 \ldots
\end{aligned}
$$

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
    bsearch a v i k
    else
    bsearch a v (k+1) j
```

$$
\begin{aligned}
f(j-i):= & 1 \\
& \quad \text { if }(j-i)<=0 \text { then } 0 \text { else } \\
& 0+1+\max 0(1+\ldots)
\end{aligned}
$$

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
            bsearch a v i k
    else
    bsearch a v (k+1) j
```

$$
\begin{aligned}
f(j-i):= & 1 \\
& \quad \text { if }(j-i)<=0 \text { then } 0 \text { else } \\
& 0+1+\max 0(1+\max \ldots \ldots)
\end{aligned}
$$

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
        bsearch a v i k
    else
        bsearch a v (k+1) j
```

f (j-i) := $1+($
if (j-i) <= 0 then 0 else
$0+1+\max 0($
$1+\max (f((j-i) / 2))$...
)
)

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
if v = Array.get a k then k
else if v < Array.get a k then
    bsearch a v i k
    else
bsearch a v (k+1) j
```

$$
\begin{aligned}
& f(j-i):=1+(\\
& \quad \text { if }(j-i)<=0 \text { then } 0 \text { else } \\
& 0+1+\max 0(\\
& 1+\max (f((j-i) / 2)) \\
& \quad(f((j-i)-(j-i) / 2-1))
\end{aligned}
$$

```
if j <= i then -1 else
    let k = i + (j - i) / 2 in
    if v = Array.get a k then k
    else if v < Array.get a k then
        bsearch a v i k
    else
        bsearch a v (k+1) j
```

f $n \quad:=1+($
if $\mathrm{n}<=0$ then 0 else
$0+1+\max 0($
$1+\max (f(n / 2))$
(f (n - n/2 - 1))
)
)

Our cost synthesis achieves the following objectives:

- The user inspects the code only once
- The user can guide the synthesis of the cost function

Summary

Modular specifications
 This work using $\mathrm{O}_{(}$) and filters

Separation Logic with Time Credits

Better automation for proofs with time credits: cost function synthesis

Closely related work

- Howell (2008), in his book, studies properties and difficulties of $O()$ with multiple variables.
- In Isabelle/HOL: Zhan \& Haslbeck (2018) implement the same formal framework, with strong focus on automation but no "cost function synthesis". They build on Eberl's (2017) impressive formalization of the Akra-Bazzi theorem.
- Hoffmann et al. (2010-2017): automated amortized resource analysis for OCaml. Implemented by
Carbonneaux, Hoffmann \& Shao (2015) with proof certificates checked by Coq.

More in the paper:

- Details about side-conditions for cost functions: monotonic and non-negative
- Clear up some confusion about multivariate $O()$
- Variable substitution in multivariate specifications
- Other case studies: selection sort, Bellman-Ford, Union-Find

```
http://gallium.inria.fr/~agueneau/big0
```

Challenging case studies in the works!

