Time Credits and Time Receipts in Iris

Glen Mével', Jacques-Henri Jourdan?, and Francois Pottier!

! Tnria
2 CNRS, LRI, Univ. Paris Sud, Université Paris Saclay

Abstract. We present a machine-checked extension of the program logic
Iris with time credits and time receipts, two dual means of reasoning
about time. Whereas time credits are used to establish an upper bound on
a program’s execution time, time receipts can be used to establish a lower
bound. More strikingly, time receipts can be used to prove that certain
undesirable events—such as integer overflows—cannot occur until a very
long time has elapsed. We present several machine-checked applications
of time credits and time receipts, including an application where both
concepts are exploited.

“Alice: How long is forever? White Rabbit: Sometimes, just one second.”

— Lewis Carroll, Alice in Wonderland

1 Introduction

A program logic, such as Hoare logic or Separation Logic, is a set of deduction
rules that can be used to reason about the behavior of a program. To this day,
considerable effort has been invested in developing ever-more-powerful program
logics that control the extensional behavior of programs, that is, logics that
guarantee that a program safely computes a valid final result. A lesser effort has
been devoted to logics that allow reasoning not just about safety and functional
correctness, but also about intensional aspects of a program’s behavior, such as
its time consumption and space usage.

In this paper, we are interested in narrowing the gap between these lines
of work. We present a formal study of two mechanisms by which a standard
program logic can be extended with means of reasoning about time. As a starting
point, we take Iris [13,11,14,12], a powerful evolution of Concurrent Separation
Logic [3]. We extend Iris with two elementary time-related concepts, namely
time credits [1,9,4] and time receipts.

Time credits and time receipts are independent concepts: it makes sense to
extend a program logic with either of them in isolation or with both of them
simultaneously. They are dual concepts: every computation step consumes one
time credit and produces one time receipt. They are purely static: they do not
exist at runtime. We view them as Iris assertions. Thus, they can appear in the
correctness statements that we formulate about programs and in the proofs of
these statements.

2 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

Time credits can be used to establish an upper bound on the execution time
of a program. Dually, time receipts can be used to establish a lower bound,
and (as explained shortly) can be used to prove that certain undesirable events
cannot occur until a very long time has elapsed.

Until now, time credits have been presented as an ad hoc extension of some
fixed flavor of Separation Logic [1,9,4]. In contrast, we propose a construction
which in principle allows time credits to be introduced on top of an arbitrary
“base logic”, provided this base logic is a sufficiently rich variety of Separation
Logic. In order to make our definitions and proofs more concrete, we use Iris as
the base logic. Our construction involves composing the base logic with a program
transformation that inserts a tick() instruction in front of every computation
step. As far as a user of the composite logic is concerned, the tick() instruction
and the assertion $1, which represents one time credit, are abstract: the only
fact to which the user has access is the Hoare triple {$1} tick() {True}, which
states that “tick() consumes one time credit”.

There are two reasons why we choose Iris [12] as the base logic. First, in the
proof of soundness of the composite logic, we must exhibit concrete definitions
of tick and $1 such that {$1} tick() {True} holds. Several features of Iris, such as
ghost state and shared invariants, play a key role in this construction. Second,
at the user level, the power of Iris can also play a crucial role. To illustrate this,
we present the first machine-checked reconstruction of Okasaki’s debits [18] in
terms of time credits. The construction makes crucial use of both time credits
and Iris’ ghost monotonic state and shared invariants.

Time receipts are a new concept, a contribution of this paper. To extend
a base logic with time receipts, we follow the exact same route as above: we
compose the base logic with the same program transformation as above, which
we refer to as “the tick translation”. In the eyes of a user of the composite logic,
the tick() instruction and the assertion X1, which represents one time receipt,
are again abstract: this time, the only published fact about tick is the triple
{True} tick() {Z 1}, which states that “tick() produces one time receipt”.

Thus far, the symmetry between time credits and time receipts seems perfect:
whereas time credits allow establishing an upper bound on the cost of a program
fragment, time receipts allow establishing a lower bound. This raises a pragmatic
question, though: why invest effort, time and money into a formal proof that a
piece of code is slow? What might be the point of such an endeavor? Taking
inspiration from Clochard et al. [5], we answer this question by turning slowness
into a quality. If there is a certain point at which a process might fail, then by
showing that this process is slow, we can show that failure is far away into the
future. More specifically, Clochard et al. propose two abstract types of integer
counters, dubbed “one-time” integers and “peano” integers, and provide a paper
proof that these counters cannot overflow in a feasible time: that is, it would take
infeasible time (say, centuries) for an execution to reach a point where overflow
actually occurs. To reflect this idea, we abandon the symmetry between time
credits and time receipts and publish a fact about time receipts which has no
counterpart on the time-credit side. This fact is an implication: X N =+ False,

Time Credits and Time Receipts in Iris 3

that is, “/N time receipts imply False”. The global parameter N can be adjusted
so as to represent one’s idea of a running time that is infeasible, perhaps due
to physical limitations, perhaps due to assumptions about the conditions in
which the software is operated. In this paper, we explain what it means for the
composite program logic to remain sound in the presence of this axiom, and
provide a formal proof that Iris, extended with time receipts, is indeed sound.
Furthermore, we verify that Clochard et al.’s ad hoc concepts of “one-time”
integers and “peano” integers can be reconstructed in terms of time receipts, a
more fundamental concept.

Finally, to demonstrate the combined use of time credits and receipts, we
present a proof of the Union-Find data structure, where credits are used to
express an amortized time complexity bound and receipts are used to prove that
a node’s integer rank cannot overflow, even if it is stored in very few bits.

In summary, the contributions of this paper are as follows:

1. A way of extending an off-the-shelf program logic with time credits and/or
receipts, by composition with a program transformation.

2. Extensions of Iris with time credits and receipts, accompanied with machine-
checked proofs of soundness.

3. A machine-checked reconstruction of Okasaki’s debits as a library in Iris with
time credits.

4. A machine-checked reconstruction of Clochard et al.’s “one-time” integers
and “peano” integers in Iris with time receipts.

5. A machine-checked verification of Union-Find in Iris with time credits and
receipts, offering both an amortized complexity bound and a safety guarantee
despite the use of machine integers of very limited width.

All of the results reported in this paper have been checked in Coq [17].

2 A user’s overview of time credits and time receipts

2.1 Time credits

A small number of axioms, presented in Figure 1, govern time credits. The
assertion $n denotes n time credits. The splitting axiom, a logical equivalence,
means that time credits can be split and combined. Because Iris is an affine logic,
it is implicitly understood that time credits cannot be duplicated, but can be
thrown away.

The axiom timeless($n) means that time credits are independent of Iris’ step-
indexing. In practice, this allows an Iris invariant that involves time credits to
be acquired without causing a “later” modality to appear [12, §5.7]. The reader
can safely ignore this detail.

The last axiom, a Hoare triple, means that every computation step requires
and consumes one time credit. As in Iris, the postconditions of our Hoare triples
are \-abstractions: they take as a parameter the return value of the term. At
this point, tick () can be thought of as a pseudo-instruction that has no runtime
effect and is implicitly inserted in front of every computation step.

4 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

$:N — Prop — there is such a thing as “n time credits”
timeless($n) — an Iris technicality
True =+ $0 — zero credits can be created out of thin air
$(n1 4+ n2) = $n1 * $no — credits can be split and combined
tick : Val — there is a tick pseudo-op
{$1} tick (v) {Pw. w = v} — tick consumes one credit

Fig. 1. The axiomatic interface T'CIntf of time credits

X: N — iProp — there is such a thing as “n time receipts”
timeless(X n) — an Iris technicality
True =+ X0 — zero receipts can be created out of thin air
X(n1 +n2) =Xny * Xng — receipts can be split and combined
tick : Val — there is a tick pseudo-op
{True} tick (v) {\w.w =v * X1} — tick produces one receipt
XN =+ False — no machine runs for N time steps

Fig. 2. The axiomatic interface of exclusive time receipts (further enriched in Figure 3)

Time credits can be used to express worst-case time complexity guarantees.
For instance, a sorting algorithm could have the following specification:

{array(a,zs) * n = |zs| * $(6nlogn)}
sort(a)
{array(a,zs’) Nzs' = ...}

Here, array(a,xs) asserts the existence and unique ownership of an array at
address a, holding the sequence of elements zs. This Hoare triple guarantees not
only that the function call sort(a) runs safely and has the effect of sorting the
array at address a, but also that sort(a) runs in at most 6nlogn time steps,
where n is the length of the sequence xs, that is, the length of the array. Indeed,
only 6n logn time credits are provided in the precondition, so the algorithm does
not have permission to run for a greater number of steps.

2.2 Time receipts

In contrast with time credits, time receipts are a new concept, a contribution
of this paper. We distinguish two forms of time receipts. The most basic form,
exclusive time receipts, is the dual of time credits, in the sense that every compu-
tation step produces one time receipt. The second form, persistent time receipts,
exhibits slightly different properties. Inspired by Clochard et al. [5], we show
that time receipts can be used to prove that certain undesirable events, such as
integer overflows, cannot occur unless a program is allowed to execute for a very,
very long time—typically centuries. In the following, we explain that exclusive

Time Credits and Time Receipts in Iris 5

time receipts allow reconstructing Clochard et al.’s “one-time” integers [5, §3.2],
which are so named because they are not duplicable, whereas persistent time
receipts allow reconstructing their “peano” integers [5, §3.2], which are so named
because they do not support unrestricted addition.

Exclusive time receipts The assertion Xn denotes n time receipts. Like time
credits, these time receipts are “exclusive”, by which we mean that they are not
duplicable. The basic laws that govern exclusive time receipts appear in Figure 2.
They are the same laws that govern time credits, with two differences. The first
difference is that time receipts are the dual of time credits: the specification of
tick, in this case, states that every computation step produces one time receipt.
The second difference lies in the last axiom of Figure 2, which has no analogue
in Figure 1, and which we explain below.

In practice, how do we expect time receipts to be exploited? They can be used
to prove lower bounds on the execution time of a program: if the Hoare triple
{True} p {ZTn} holds, then the execution of the program p cannot terminate in
less than n steps. Inspired by Clochard et al. [5], we note that time receipts can
also be used to prove that certain undesirable events cannot occur in a feasible
time. This is done as follows. Let N be a fixed integer, chosen large enough
that a modern processor cannot possibly execute N operations in a feasible
time.* The last axiom of Figure 2, XN = False, states that N time receipts
imply a contradiction.® This axiom informally means that we won’t compute
for N time steps, because we cannot, or because we promise not to do such a
thing. A consequence of this axiom is that Xn implies n < N: that is, if we have
observed n time steps, then n must be small.

Adopting this axiom weakens the guarantee offered by the program logic. A
Hoare triple {True} p {True} no longer implies that the program p is forever
safe. Instead, it means that p is (N — 1)-safe: the execution of p cannot go wrong
until at least N — 1 steps have been taken. Because N is very large, for many
practical purposes, this is good enough.

How can this axiom be exploited in practice? We hinted above that it can be
used to prove the absence of certain integer overflows. Suppose that we wish to
use signed w-bit machine integers as a representation of mathematical integers.
(For instance, let w be 64.) Whenever we perform an arithmetic operation, such
as an addition, we must prove that no overflow can occur. This is reflected in
the specification of the addition of two machine integers:

{t(zy) =ny * t(zg) =ng * =201 <ny +ny <2971}
add(z,x2)
{\z. t(x) =n1 +no}

3 For now, we discuss time credits and time receipts separately, which is why we have
different specifications for tick in either case. They are combined in §6.

4 For a specific example, let N be 2°3. Clochard et al. note that, even at the rate of one
billion operations per second, it takes more than 292 years to execute 2°% operations.
On a 64-bit machine, 253 is also the maximum representable signed integer, plus one.

5 The connective =+ is an Iris view shift, that is, a transition that can involve a side
effect on ghost state.

6 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

Here, the variables x; denote machine integers, while the auxiliary variables n;
denote mathematical integers, and the function ¢ is the injection of machine
integers into mathematical integers. The conjunct —2¥~1 < n; +ny < 2¥~ 1 in
the precondition represents an obligation to prove that no overflow can occur.
Suppose now that the machine integers x; and x5 represent the lengths of
two disjoint linked lists that we wish to concatenate. To construct each of these
lists, we must have spent a certain amount of time: as proofs of this work, let
us assume that the assertions Xn; and Xnsy are at hand. Let us further assume
that the word size w is sufficiently large that it takes a very long time to count
up to the largest machine integer. That is, let us make the following assumption:

N <ovwl (large word size assumption)

(E.g., with N = 293 and w = 64, this holds.) Then, we can prove that the
addition of x; and x5 is permitted. This goes as follows. From the separating
conjunction Xn; * Xng, we get X(ng +ns). The existence of these time receipts
allows us to deduce 0 < n; + no < N, which implies 0 < nq + ny < 2@~ 1. Thus,
the precondition of the addition operation add(z1,x2) is met.

In summary, we have just verified that the addition of two machine integers
satisfies the following alternative specification:

{t(x1) =n1 * Tng * (xz) =ng * Xng}
add(x1,x2)
{Az.1(x) =n1 +ng *x Z(ny +n2)}

This can be made more readable and more abstract by defining a “clock” to be
a machine integer x accompanied with ¢(z) time receipts:

clock(x) = In.(1(x) =n * En)
Then, the above specification of addition can be reformulated as follows:

{clock(x1) * clock(z2)}
add(x1,x2)
{Az. clock(z) * v(z) = t(z1) + t(x2)}

In other words, clocks support unrestricted addition, without any risk of overflow.
However, because time receipts cannot be duplicated, neither can clocks: clock(x)
does not entail clock(x) * clock(x). In other words, a clock is uniquely owned.
One can think of a clock = as a hard-earned integer: the owner of this clock has
spent x units of time to obtain it.

Clocks are a reconstruction of Clochard et al.’s “one-time integers” [5], which
support unrestricted addition, but cannot be duplicated. Whereas Clochard et
al. view one-time integers as a primitive concept, and offer a direct paper proof of
their soundness, we have just reconstructed them in terms of a more elementary
notion, namely time receipts, and in the setting of a more powerful program
logic, whose soundness is machine-checked, namely Iris.

Time Credits and Time Receipts in Iris 7

X: N — iProp — there is such a thing as “n exclusive time receipts”
X : N — iProp — and “a persistent receipt for n steps”
timeless(¥n) A timeless(Xn) — an Iris technicality
persistent(Xn) — persistent receipts are persistent
True =+ X0 — zero receipts can be created out of thin air
X(n1 +n2) =Xn1 x Xnp — exclusive receipts obey addition
Hmax(m, ng) =Xn1 * ¥ny — persistent receipts obey maximum
In=+Xn *x Xn — taking a snapshot of n exclusive receipts
yields a persistent receipt for n steps
XN =+ False — no machine runs for N time steps
tick : Val — there is a tick pseudo-op
{Bn}
tick (v) — tick produces one exclusive receipt,

{Mw.w=v x X1 * ¥(n+1)} and can increment an existing persistent receipt

Fig. 3. The axiomatic interface TRIntf of time receipts

Persistent time receipts In addition to exclusive time receipts, it is useful
to introduce a persistent form of time receipts.® The axioms that govern both
exclusive and persistent time receipts appear in Figure 3.

We write ¥n for a persistent receipt, a witness that at least n units of time
have elapsed. (We avoid the terminology “n persistent time receipts”, in the plural
form, because persistent time receipts are not additive. We view ¥ n as one receipt
whose face value is n.) This assertion is persistent, which in Iris terminology
means that once it holds, it holds forever. This implies, in particular, that it
is duplicable: Xn = En % En. It is created just by observing the existence of
n exclusive time receipts, as stated by the following axiom, also listed in Figure 3:
Xn =71 Xn *x ¥n. Intuitively, someone who has access to the assertion ¥n is
someone who knows that n units of work have been performed, even though they
have not necessarily “personally” performed that work. Because this knowledge is
not exclusive, the conjunction Xny * Eng does not entail R(n; +ns). Instead, we
have the following axiom, also listed in Figure 3: R(max(ni,n2)) = 8n; * Xna.

More subtly, the specification of tick in Figure 3 is stronger than the one
in Figure 2. According to this strengthened specification, tick () does not just
produce an exclusive receipt X 1. In addition to that, if a persistent time receipt
Rn is at hand, then tick () is able to increment it and to produce a new persistent
receipt X(n + 1), thus reflecting the informal idea that a mew unit of time has
just been spent. A user who does not wish to make use of this feature can pick
n = 0 and recover the specification of tick in Figure 2 as a special case.

Finally, because ¥n means that n steps have been taken, and because we
promise never to reach N steps, we adopt the axiom X N = False, also listed

5 Instead of viewing persistent time receipts as a primitive concept, one could define
them as a library on top of exclusive time receipts. Unfortunately, this construction
leads to slightly weaker laws, which is why we prefer to view them as primitive.

8 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

in Figure 3. It implies the earlier axiom X N =+ False, which is therefore not
explicitly shown in Figure 3.

In practice, how are persistent time receipts exploited? By analogy with
clocks, let us define a predicate for a machine integer x accompanied with ¢(x)
persistent time receipts:

snapclock(x) £ In.(1(x) =n * Bn)
By construction, this predicate is persistent, therefore duplicable:
snapclock(x) = snapclock(x) * snapclock(x)

We refer to this concept as a “snapclock”, as it is not a clock, but can be thought
of as a snapshot of some clock. Thanks to the axiom Xk =+ Xk * Xk, we have:

clock(z) = clock(x) * snapclock(x)

Furthermore, snapclocks have the valuable property that, by performing just
one step of extra work, a snapclock can be incremented, yielding a new snapclock
that is greater by one. That is, the following Hoare triple holds:

{snapclock(x)}
tick (); add(x, 1)
{A\x’. snapclock(z') * v(z') = o(z) + 1}

The proof is not difficult. Unfolding snapclock(z) in the precondition yields Bn,
where ¢(z) = n. As per the strengthened specification of tick, the execution of
tick () then yields X1 x R(n+1). As in the case of clocks, the assertion B(n+ 1)
implies 0 < n 4+ 1 < 2%~! which means that no overflow can occur. Finally, X1
is thrown away and R(n+1) is used to justify snapclock(z') in the postcondition.

Adding two arbitrary snapclocks 7 and s is illegal: from the sole assumption
snapclock(x1) * snapclock(zs), one cannot prove that the addition of 1 and a2
won’t cause an overflow, and one cannot prove that its result is a valid snapclock.
However, snapclocks do support a restricted form of addition. The addition of
two snapclocks x1 and x9 is safe, and produces a valid snapclock x, provided it
is known ahead of time that its result is less than some preexisting snapclock y:

{snapclock(x1) * snapclock(xs) * (a1 + 22) < t(y) * snapclock(y)}
add(z1,x2)
{A\z. snapclock(x) * 1(x) = v(x1) + t(z2)}

Snapclocks are a reconstruction of Clochard et al.’s “peano integers” [5], which
are so named because they do not support unrestricted addition. Clocks and
snapclocks represent different compromises: whereas clocks support addition but
not duplication, snapclocks support duplication but not addition. They are useful
in different scenarios: as a rule of thumb, if an integer counter is involved in the
implementation of a mutable data structure, then one should attempt to view it
as a clock; if it is involved in the implementation of a persistent data structure,
then one should attempt to view it as a snapclock.

Time Credits and Time Receipts in Iris 9

3 HeapLang and the tick translation

In the next section (§4), we extend Iris with time credits, yielding a new program
logic Iris®. We do this without modifying Iris. Instead, we compose Iris with a
program transformation, the “tick translation”, which inserts tick() instructions
into the code in front of every computation step. In the construction of Iris¥, our
extension of Iris with time receipts, the tick translation is exploited in a similar
way (§5). In this section (§3), we define the tick translation and state some of
its properties.

Iris is a generic program logic: it can be instantiated with an arbitrary cal-
culus for which a small-step operational semantics is available [12]. Ideally, our
extension of Iris should take place at this generic level, so that it, too, can be in-
stantiated for an arbitrary calculus. Unfortunately, it seems difficult to define the
tick translation and to prove it correct in a generic manner. For this reason, we
choose to work in the setting of HeapLang [12], an untyped A-calculus equipped
with Booleans, signed machine integers, products, sums, recursive functions,
references, and shared-memory concurrency. The three standard operations on
mutable references, namely allocation, reading, and writing, are available. A
compare-and-set operation CAS(eq, e, e3) and an operation for spawning a new
thread are also provided. As the syntax and operational semantics of HeapLang
are standard and very much irrelevant in this paper, we omit them. They appear
in our online repository [17].

The tick translation transforms a HeaplLang expression e to a HeapLang
expression ((€))4cx. It is parameterized by a value tick. Its effect is to insert a
call to tick in front of every operation in the source expression e. The translation
of a function application, for instance, is as follows:

(e (e2)tick = tick ((e1))sick) ((e2)) tick)

For convenience, we assume that tick can be passed an arbitrary value v as an
argument, and returns v. Because evaluation in HeapLang is call-by-value and
happens to be right-to-left”, the above definition means that, after evaluating
the argument {(es))+cr and the function (e)ik, we invoke tick, then carry on
with the function call. This translation is syntactically well-behaved: it preserves
the property of being a value, and commutes with substitution. This holds for
every value tick.

As far the end user is concerned, tick remains abstract (§2). Yet, in our
constructions of Iris® and Iris¥, we must provide a concrete implementation of it
in HeapLang. This implementation, named tick., appears in Figure 4. A global
integer counter c¢ stores the number of computation steps that the program is still
allowed to take. The call tick. () decrements a global counter ¢, if this counter
holds a nonzero value, and otherwise invokes oops ().

At this point, the memory location ¢ and the value oops are parameters.

" If HeapLang used left-to-right evaluation, the definition of the translation would be
slightly different, but the lemmas that we prove would be the same.

10 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

tick. £ rec self (z) =
letk=!cin
if k£ = 0 then oops ()
elseif CAS(¢,k,k — 1) thenz else self (z)

Fig. 4. Implementation of tick. in HeapLang

We stress that tick. plays a role only in the proofs of soundness of Iris® and
Iris%. It is never actually executed, nor is it shown to the end user.

Once tick is instantiated with tick., one can prove that the translation is
correct in the following sense: the translated code takes the same computation
steps as the source code and additionally keeps track of how many steps are
taken. More specifically, if the source code can make n computation steps, and
if ¢ is initialized with a value m that is sufficiently large (that is, m > n), then
the translated code can make n computation steps as well, and ¢ is decremented
from m to m — n in the process.

Lemma 1 (Reduction Preservation). Assume there is a reduction sequence:
(Tlaa-l) %?p (T2702)

Assume c is fresh for this reduction sequence. Let m > n. Then, there exists a
reduction sequence:

(7)) (ou)) [e =ml) = ((T2), (o2)) [¢ = m —n])

In this statement, the metavariable T" stands for a thread pool, while o stands
for a heap. The relation —, is HeapLang’s “threadpool reduction”. For the sake
of brevity, we write just ((e)) for ((€))sck., that is, for the translation of the
expression e, where tick is instantiated with tick.. This notation is implicitly
dependent on the parameters ¢ and oops.

The above lemma holds for every choice of oops. Indeed, because the counter ¢
initially holds the value m, and because we have m > n, the counter is never
about to fall below zero, so oops is never invoked.

The next lemma also holds for every choice of oops. It states that if the
translated program is safe and if the counter ¢ has not yet reached zero then the
source program is not just about to crash.

Lemma 2 (Immediate Safety Preservation). Assume c is fresh for e. Let
m > 0. If the configuration ({e)), (o) [c <—m]) is safe, then either e is a value
or the configuration (e, o) is reducible.

By combining Lemmas 1 and 2 and by contraposition, we find that safety is
preserved backwards, as follows: if, when the counter c is initialized with m, the
translated program ((e)) is safe, then the source program e is m-safe.

Lemma 3 (Safety Preservation). If for every location c the configuration
({T), (o) [c+—m]) is safe, then the configuration (T, o) is m-safe.

Time Credits and Time Receipts in Iris 11

4 Iris with time credits

The authors of Iris [12] have used Coq both to check that Iris is sound and to
offer an implementation of Iris that can be used to carry out proofs of programs.
The two are tied: if {True} p {True} can be established by applying the proof
rules of Iris, then one gets a self-contained Coq proof that the program p is safe.

In this section, we temporarily focus on time credits and explain how we
extend Iris with time credits, yielding a new program logic Iris®. The new logic
is defined in Coq and still offers an end-to-end guarantee: if {$k} p {True} can
be established in Coq by applying the proof rules of Iris®, then one has proved
in Coq that p is safe and runs in at most k steps.

To define Iris®, we compose Iris with the tick translation. We are then able to
argue that, because this program transformation is operationally correct (that is,
it faithfully accounts for the passing of time), and because Iris is sound (that is, it
faithfully approximates the behavior of programs), the result of the composition
is a sound program logic that is able to reason about time.

In the following, we view the interface T'CInif as explicitly parameterized
over $ and tick. Thus, we write “ TCIntf ($) tick” for the separating conjunction
of all items in Figure 1 except the declarations of $ and tick.

We require the end user, who wishes to perform proofs of programs in Iris®,
to work with Iris® triples, which are defined as follows:

Definition 1 (Iris® triple). An Iris® triple {P} e {®} is syntactic sugar for:
V($: N — iProp) Vtick TCIntf ($) tick — {P}{e)ck {P}

Thus, an Iris® triple is in reality an Iris triple about the instrumented expression
{(e) tick- While proving this Iris triple, the end user is given an abstract view
of the predicate $ and the instruction tick. He does not have access to their
concrete definitions, but does have access to the laws that govern them.

We prove that Iris® is sound in the following sense:

Theorem 1 (Soundness of Iris®). If {$n} e {Truelg holds, then the machine
configuration (e,), where & is the empty heap, is safe and terminates in at
most n steps.

In other words, a program that is initially granted n time credits cannot run
for more than n steps. To establish this theorem, we proceed roughly as follows:

1. we provide a concrete definition of tick;

2. we provide a concrete definition of $ and prove that TCIntf ($) tick holds;

3. this yields {$n} {(€))tick {True}; from this and from the correctness of the tick
translation, we deduce that e cannot crash or run for more than n steps.

Step 1. Our first step is to provide an implementation of tick. As announced
earlier (§3), we use tick. (Figure 4). We instantiate the parameter oops with
crash, an arbitrary function whose application is unsafe. (That is, crash is chosen
so that crash () reduces to a stuck term.) For the moment, ¢ remains a parameter.

12 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

With these concrete choices of tick and oops, the translation transforms an
out-of-time-budget condition into a hard crash. Because Iris forbids crashes,
Iris®, which is the composition of the translation with Iris, will forbid out-of-
time-budget conditions, as desired.

For technical reasons, we need two more lemmas about the translation, whose
proofs rely on the fact that oops is instantiated with crash. They are slightly
modified or strengthened variants of Lemmas 2 and 3. First, if the source code
can take one step, then the translated code, supplied with zero budget, crashes.
Second, if the translated code, supplied with a runtime budget of m, does not
crash, then the source code terminates in at most m steps.

Lemma 4 (Credit Exhaustion). Suppose the configuration (T, o) is reducible.
Then, for all ¢, the configuration ({T), (o) [c +0]) is unsafe.

Lemma 5 (Safety Preservation, Strengthened). If for every location c¢ the
configuration ({T), (o) [c+m]) is safe, then (T, o) is safe and terminates in
at most m steps.

Step 2. Our second step, roughly, is to exhibit a definition of $: N — ¢Prop
such that TCIntf ($) tick. is satisfied. That is, we would like to prove something
along the lines of: 3($: N — iProp) TCIntf ($) tick.. However, these informal
sentences do not quite make sense. This formula is not an ordinary proposition:
it is an Iris assertion, of type iProp. Thus, it does not make sense to say that
this formula “is true” in an absolute manner. Instead, we prove in Iris that we
can make this assertion true by performing a view shift, that is, a number of
operations that have no runtime effect, such as allocating a ghost location and
imposing an invariant that ties this ghost state with the physical state of the
counter c. This is stated as follows:

Lemma 6 (Time Credit Initialization). For every ¢ and n, the following
Iris view shift holds:

(c—n) =1 3($:N— iProp) (TCIntf ($) tick, * $n)

In this statement, on the left-hand side of the view shift symbol, we find
the “points-to” assertion ¢ +— n, which represents the unique ownership of the
memory location ¢ and the assumption that its initial value is n. This assertion
no longer appears on the right-hand side of the view shift. This reflects the fact
that, when the view shift takes place, it becomes impossible to access ¢ directly;
the only way of accessing it is via the operation tick..

On the right-hand side of the view shift symbol, beyond the existential quan-
tifier, we find a conjunction of the assertion TCIntf (8) tick., which means that
the laws of time credits are satisfied, and $n, which means that there are initially
n time credits in existence.

In the interest of space, we provide only a brief summary of the proof of
Lemma 6; the reader is referred to Appendix A for more details. In short, the
assertion $1 is defined in such a way that it represents an exclusive contribution

Time Credits and Time Receipts in Iris 13

of one unit to the current value of the global counter c¢. In other words, we
install the following invariant: at every time, the current value of ¢ is (at least)
the sum of all time credits in existence. Thus, the assertion $1 guarantees that
¢ is nonzero, and can be viewed as a permission to decrement ¢ by one. This
allows us to prove that the specification of tick in Figure 1 is satisfied by our
concrete implementation tick.. In particular, tick. cannot cause a crash: indeed,
under the precondition $1, ¢ is not in danger of falling below zero, and crash ()
is not executed—it is in fact dead code.

Step 3. In the last reasoning step, we complete the proof of Theorem 1. The
proof is roughly as follows. Suppose the end user has established {$n} e {True}s.
By Safety Preservation, Strengthened (Lemma 5), to prove that (e, &) is safe and
runs in at most n steps, it suffices to show (for an arbitrary location ¢) that the
translated expression ((e)), executed in the initial heap @ [¢ + n], is safe. To do
s0, beginning with this initial heap, we perform Time Credit Initialization, that
is, we execute the view shift whose statement appears in Lemma 6. This yields
an abstract predicate $ as well as the assertions TCIntf ($) tick and $n. At
this point, we unfold the Iris® triple {$n} e {True}g, yielding an implication (see
Definition 1), and apply it to $, to tick., and to the hypothesis TCIntf ($) tick.
This yields the Iris triple {$n} (e)) {True}. Because we have $n at hand and
because Iris is sound [12], this implies that ((e)) is safe. This concludes the proof.

This last step is, we believe, where the modularity of our approach shines.
Iris’ soundness theorem is re-used as a black box, without change. In fact, any
program logic other than Iris could be used as a basis for our construction, as
along as it is expressive enough to prove Time Credit Initialization (Lemma 6).
The last ingredient, Safety Preservation, Strengthened (Lemma 5), involves only
the operational semantics of HeapLang, and is independent of Iris.

This was just an informal account of our proof. For further details, the reader
is referred to the online repository [17].

5 Iris with time receipts

In this section, we extend Iris with time receipts and prove the soundness of
the new logic, dubbed Iris®. To do so, we follow the scheme established in the
previous section (§4), and compose Iris with the tick translation.

From here on, let us view the interface of time receipts as parameterized
over X, R, and tick. Thus, we write “TRIntf (X) () tick” for the separating
conjunction of all items in Figure 3 except the declarations of X, ¥, and tick.

As in the case of credits, the user is given an abstract view of time receipts:

Definition 2 (Iris¥ triple). An Iris¥ triple {P} e {®}g is syntactic sugar for:
V(X,%: N — iProp) Vtick TRIntf (X) (R) tick — {P} {e)tick {P}

Theorem 2 (Soundness of Iris¥). If {True} e {True}g holds, then the machine
configuration (e, @) is (N — 1)-safe.

14 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

As indicated earlier, we assume that the end user is interested in proving that
crashes cannot occur until a very long time has elapsed, which is why we state
the theorem in this way.® Whereas an Iris triple {True} e {True} guarantees that
e is safe, the Iris® triple {True} e {True}g guarantees that it takes at least N — 1
steps of computation for e to crash. In this statement, IV is the global parameter
that appears in the axiom X N = False (Figure 3). Compared with Iris, Iris¥
provides a weaker safety guarantee, but offers additional reasoning principles,
leading to increased convenience and modularity.

In order to establish Theorem 2, we again proceed in three steps:

1. provide a concrete definition of tick;
2. provide concrete definitions of X, X and prove that TRIntf (X) () tick holds;
3. from {True} ((€))tick {True}, deduce that e is (N — 1)-safe.

Step 1. In this step, we keep our concrete implementation of tick, namely tick,.
(Figure 4). One difference with the case of time credits, though, is that we plan
to initialize ¢ with N — 1. Another difference is that, this time, we instantiate
the parameter oops with loop, where loop () is an arbitrary divergent term.?

Step 2. The next step is to prove that we are able to establish the time receipt
interface. We prove the following:

Lemma 7 (Time Receipt Initialization). For every location c, the following
Iris view shift holds:

(c—N—-1) =+ X, R:N— iProp) TRIntf (X) (R) tick.

We provide only a brief summary of the proof of Lemma 7; for further details,
the reader is referred to Appendix B. Roughly speaking, we install the invariant
that ¢ holds N — 1 — 4, where ¢ is some number that satisfies 0 < i < N. We
define Tn as an exclusive contribution of n units to the current value of 7, and
define Rn as an observation that 7 is at least n. (¢ grows with time, so such an
observation is stable.) As part of the proof of the above lemma, we check that
the specification of tick holds:

{Rn} tick (v) {Aw.w=v x T1 * B(n+ 1)}

In contrast with the case of time credits, in this case, the precondition Xn does
not guarantee that ¢ holds a nonzero value. Thus, it is possible for tick() to
be executed when c¢ is zero. This is not a problem, though, because loop() is
safe to execute in any situation: it satisfies the Hoare triple {True} loop() {False}.
In other words, when ¢ is about to fall below zero and therefore the invariant
i < N seems about to be broken, loop () saves the day by running away and
never allowing execution to continue normally.

8 If the user instead wishes to establish a lower bound on a program’s execution time,
this is possible as well.

9 In fact, it is not essential that loop() diverges. What matters is that loop satisfy
the Iris triple {True} loop() {False}. A fatal runtime error that Iris does not rule out
would work just as well, as it satisfies the same specification.

Time Credits and Time Receipts in Iris 15

Step 3. In the last reasoning step, we complete the proof of Theorem 2. Sup-
pose the end user has established {True} e {True}g. By Safety Preservation
(Lemma 3), to prove that (e, @) is (N —1)-safe, it suffices to show (for an arbitrary
location c¢) that ((e)), executed in the initial heap @ [¢ +— N — 1], is safe. To do so,
beginning with this initial heap, we perform Time Receipt Initialization, that is,
we execute the view shift whose statement appears in Lemma 7. This yields two
abstract predicates X and X as well as the assertion TRIntf (X) (R) tick. At this
point, we unfold {True} e {True}g (see Definition 2), yielding an implication, and
apply this implication, yielding the Iris triple {True} () {True}. Because Iris is
sound [12], this implies that {(e)) is safe. This concludes the proof. For further
detail, the reader is again referred to our online repository [17].

6 Marrying time credits and time receipts

It seems desirable to combine time credits and time receipts in a single program
logic, Tris*8. We have done so [17]. In short, following the scheme of §4 and §5, the
definition of Iris*® involves composing Iris with the tick translation. This time,
tick serves two purposes: it consumes one time credit and produces one exclusive
time receipt (and increments a persistent time receipt). Thus, its specification is
as follows:

{$1 % Bn} tick (v) {\w.w=v x X1 * B(n+1)}

Let us write TCTRIntf ($) (X) (R) tick for the combined interface of time credits
and time receipts. This interface combines all of the axioms of Figures 1 and 3,
but declares a single tick function'® and proposes a single specification for it,
which is the one shown above.

Definition 3 (Iris*% triple). An Iris®® triple {P} e {®}¢g stands for:
V($) (@) (B) tick TCTRInif (3) (X) (¥) tick = {P} (€)ick {2}

Theorem 3 (Soundness of Iris®®). If {$n} e {True}s g holds then the machine
configuration (e, o) is (N — 1)-safe. If furthermore n < N holds, then this
machine configuration terminates in at most n steps.

Iris®® allows exploiting time credits to prove time complexity bounds and, at
the same time, exploiting time receipts to prove the absence of certain integer
overflows. Our verification of Union-Find (§8) illustrates these two aspects.

Guéneau et al. [7] use time credits to reason about asymptotic complexity,
that is, about the manner in which a program’s complexity grows as the size
of its input grows towards infinity. Does such asymptotic reasoning make sense
in Iris®®, where no program is ever executed for N time steps or beyond? It
seems to be the case that if a program p satisfies the triple {$n} p {®}5g, then

10 Even though the interface provides only one tick function, it gets instantiated in the
soundness theorem with different implementations depending on whether there are
more than N time credits or not.

16 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

it also satisfies the stronger triple {$min(n, N)} p {P}¢x, therefore also satisfies
{$N} p {@}5x. Can one therefore conclude that p has “constant time complexity’?
We believe not. Provided N is considered a parameter, as opposed to a constant,
one cannot claim that “N is O(1)”, so {$min(n, N)} p {®#}gg does not imply
that “p runs in constant time”. In other words, a universal quantification on NV
should come after the existential quantifier that is implicit in the O notation. We
have not yet attempted to implement this idea; this remains a topic for further
investigation.

7 Application: thunks in Iris®

In this section, we illustrate the power of Iris® by constructing an implementation
of thunks as a library in Iris®. A thunk, also known as a suspension, is a very
simple data structure that represents a suspended computation. There are two
operations on thunks, namely create, which constructs a new thunk, and force,
which demands the result of a thunk. A thunk memoizes its result, so that even
if it is forced multiple times, the computation only takes place once.

Okasaki [18] proposes a methodology for reasoning about the amortized time
complexity of computations that involve shared thunks. For every thunk, he
keeps track of a debit, which can be thought of as an amount of credit that one
must still pay before one is allowed to force this thunk. A ghost operation, pay,
changes one’s view of a thunk, by reducing the debit associated with this thunk.
force can be applied only to a zero-debit thunk, and has amortized cost O(1).
Indeed, if this thunk has been forced already, then force really requires constant
time; and if this thunk is being forced for the first time, then the cost of perform-
ing the suspended computation must have been paid for in advance, possibly in
several installments, via pay. This discipline is sound even in the presence of
sharing, that is, of multiple pointers to a thunk. Indeed, whereas duplicating
a credit is unsound, duplicating a debit leads to an over-approximation of the
true cost, hence is sound. Danielsson [6] formulates Okasaki’s ideas as a type
system, which he proves sound in Agda. Pilkiewicz and Pottier [19] reconstruct
this type discipline in the setting of a lower-level type system, equipped with
basic notions of time credits, hidden state, and monotonic state. Unfortunately,
their type system is presented in an informal manner and does not come with a
proof of type soundness.

We reproduce Pilkiewicz and Pottier’s construction in the formal setting of
Iris®. Indeed, Iris® offers all of the necessary ingredients, namely time credits,
hidden state (invariants, in Iris terminology) and monotonic state (a special case
of Iris’ ghost state). Our reconstruction is carried out inside Coq [17].

7.1 Concurrency and reentrancy

One new problem that arises here is that Okasaki’s analysis, which is valid in a
sequential setting, potentially becomes invalid in a concurrent setting. Suppose
we wish to allow multiple threads to safely share access to a thunk. A natural,

Time Credits and Time Receipts in Iris 17

simple-minded approach would be to equip every thunk with a lock and allow
competition over this lock. Then, unfortunately, forcing would become a blocking
operation: one thread could waste time waiting for another thread to finish
forcing. In fact, in the absence of a fairness assumption about the scheduler,
an unbounded amount of time could be wasted in this way. This appears to
invalidate the property that force has amortized cost O(1).

Technically, the manner in which this problem manifests itself in Iris® is in
the specification of locks. Whereas in Iris a spin lock can be implemented and
proved correct with respect to a simple and well-understood specification [2], in
Iris®, it cannot. The lock() method contains a potentially infinite loop: therefore,
no finite amount of time credits is sufficient to prove that lock() is safe. This
issue is discussed in greater depth later on (§9).

A distinct yet related problem is reentrancy. Arguably, an implementation
of thunks should guarantee that a suspended computation is evaluated at most
once. This guarantee seems particularly useful when the computation has a side
effect: the user can then rely on the fact that this side effect occurs at most
once. However, this property does not naturally hold: in the presence of heap-
allocated mutable state, it is possible to construct an ill-behaved “reentrant”
thunk which, when forced, attempts to recursively force itself. Thus, something
must be done to dynamically reject or statically prevent reentrancy. In Pilkiewicz
and Pottier’s code [19], reentrancy is detected at runtime, thanks to a three-color
scheme, and causes a fatal runtime failure. In a concurrent system where each
thunk is equipped with a lock, reentrancy is also detected at runtime, and turned
into deadlock; but we have explained earlier why we wish to avoid locks.

Fortunately, Iris provides us with a static mechanism for forbidding both con-
currency and reentrancy. We introduce a unique token #, which can be thought
of as “permission to use the thunk API”, and set things up so that pay and force
require and return ¢. This forbids concurrency: two operations on thunks cannot
take place concurrently. Furthermore, when a user-supplied suspended computa-
tion is executed, the token # is not transmitted to it. This forbids reentrancy.'!
The implementation of this token relies on Iris’ “nonatomic invariants” (§7.4).
With these restrictions, we are able to prove that Okasaki’s discipline is sound.

7.2 Implementation of thunks

A simple implementation of thunks in HeapLang appears in Figure 5. A thunk
can be in one of two states: White f and Black v. A white thunk is unevaluated:
the function f represents a suspended computation. A black thunk is evaluated:
the value v is the result of the computation that has been performed already.

1 Therefore, a suspended computation cannot force any thunk. This is admittedly a
very severe restriction, which rules out many useful applications of thunks. In fact,
we have implemented a more flexible discipline, where thunks can be grouped in
multiple “regions” and there is one token per region instead of a single global ¢
token. This discipline allows concurrent or reentrant operations on provably distinct
thunks, yet can still be proven sound.

18 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

create 2 \f. ref(White f)
force & \t. match !t with
White f = letv = f ()int < Black v; v
| Black v = v
end

Fig. 5. An implementation of thunks

isThunk : Loc = N — (Val — iProp) — iProp — there exist “thunks”

persistent(isThunk ¢t n @)

n; < ng —*

isThunk t nqy @ = isThunk t no @
7 : iProp
2

{83 = {3n} (f O) {2}}

(
(create (£)))
{Xt.isThunk t n @}

(Vv. duplicable(® v)) —
{$11 « isThunk t 0 & x ¢}

(force (1))
{Aw.®v * £}

isThunk t n @ * $k = ¢
=1 isThunk t (n — k) @ « ¢

— thunks can be shared

— it is sound to
overestimate a debt

— there exist “thunderbolts”

— the user is handed one

— a computation of cost n
gives rise to an n-debit thunk;
the cost is O(1)

— a 0-debit thunk can be forced;
the thunderbolt is required;
the cost is O(1)

— paying reduces one’s debt

Fig. 6. A simple specification of thunks in Iris®

Two colors are sufficient: because our static discipline rules out reentrancy, there
is no need for a third color, whose purpose would be to dynamically detect an
attempt to force a thunk that is already being forced.

7.3 Specification of thunks in Iris®

Our specification of thunks appears in Figure 6. It declares an abstract predicate
isThunk ¢ n @, which asserts that ¢ is a valid thunk, that the debt associated
with this thunk is n, and that this thunk (once forced) produces a value that
satisfies the postcondition &. The number n, a debit, is the number of credits
that remain to be paid before this thunk can be forced. The postcondition ¢
is chosen by the user when a thunk is created. It must be duplicable (this is
required in the specification of force) because force can be invoked several times
and we must guarantee, every time, that the result v satisfies @ v.

The second axiom states that isThunk ¢ n & is a persistent assertion. This
means that a valid thunk, once created, remains a valid thunk forever. Among

Time Credits and Time Receipts in Iris 19

other things, it is permitted to create two pointers to a single thunk and to
reason independently about each of these pointers.

The third axiom states that isThunk ¢ n & is covariant in its parameter n.
Overestimating a debt still leads to a correct analysis of a program’s worst-case
time complexity.

Next, the specification declares an abstract assertion #, and provides the user
with one copy of this assertion. We refer to it as “the thunderbolt”.

The next item in Figure 6 is the specification of create. It is higher-order: the
precondition of create contains a specification of the function f that is passed
as an argument to create. This axiom states that, if f represents a computa-
tion of cost m, then create (f) produces an n-debit thunk. The cost of creation
itself is 3 credits. This specification is somewhat simplistic, as it does not allow
the function f to have a nontrivial precondition. It is possible to offer a richer
specification; we eschew it in favor of simplicity.

Next comes the specification of force. Only a 0-debit thunk can be forced. The
result is a value v that satisfies . The (amortized) cost of forcing is 11 credits.
The thunderbolt appears in the pre- and postcondition of force, forbidding any
concurrent attempts to force a thunk.

The last axiom in Figure 6 corresponds to pay. It is a view shift, a ghost
operation. By paying k credits, one turns an n-debit thunk into an (n — k)-debit
thunk. At runtime, nothing happens: it is the same thunk before and after the
payment. Yet, after the view shift, we have a new view of the number of debits
associated with this thunk. Here, paying requires the thunderbolt. It should be
possible to remove this requirement; we have not yet attempted to do so.

7.4 Proof of thunks in Iris®

After implementing thunks in HeapLang (§7.2) and expressing their specification
in Iris® (§7.3), there remains to prove that this specification can be established.
We sketch the key ideas of this proof.

Following Pilkiewicz and Pottier [19], when a new thunk is created, we install
a new Iris invariant, which describes this thunk. The invariant is as follows:

ThunkInv t v nc ® =

Jac. (leac)” 3f. t > White f « {$nc}f () {9} * Sac
ac- 129 * \ 3u. t s Black v * D(v)

v is a ghost location, which we allocate at the same time as the thunk ¢. It holds
elements of the authoritative monoid AUTH(N, max) [12]. The variable ne, for
“necessary credits”, is the cost of the suspended computation: it appears in the
precondition of f. The variable ac, for “available credits”, is the number of credits
that have been paid so far. The disjunction inside the invariant states that:

— either the thunk is white, in which case we have ac credits at hand;
— or the thunk is black, in which case we have no credits at hand, as they have
been spent already.

20 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

The predicate isThunk ¢ n & is then defined as follows:
isThunk tn @ £

Iy, ne. (‘L:o:@:c:;:ﬁ):ﬁ * Nalnv(ThunkInv t v nc 45))

" inside isThunk ¢ n @, confronted

|
with the authoritative assertion ! e ggﬂ that can be obtained by acquiring the
invariant, implies the inequality nc — n < ac, therefore nc < ac+ n. That is, the
credits paid so far (ac) plus the credits that remain to be paid (n) are sufficient
to cover for the actual cost of the computation (nc). In particular, in the proof
of force, we have a 0-debit thunk, so nc < ac holds. In the case where the thunk
is white, this means that the ac credits that we have at hand are sufficient to
justify the call f (), which requires nc credits.

The final aspect that remains to be explained is our use of Nalnv(- -), an Iris
“nonatomic invariant”. Indeed, in this proof, we cannot rely on Iris’ primitive
invariants. A primitive invariant can be acquired only for the duration of an
atomic instruction [12]. In our implementation of thunks (Figure 5), however, we
need a “critical section” that encompasses several instructions. That is, we must
acquire the invariant before dereferencing ¢, and (in the case where this thunk is
white) we cannot release it until we have marked this thunk black. Fortunately,
Iris provides a library of “nonatomic invariants” for this very purpose. (This
library is used in the RustBelt project [10] to implement Rust’s type Cell.) This
library offers separate ghost operations for acquiring and releasing an invariant.
Acquiring an invariant consumes a unique token, which is recovered when the
invariant is released: this guarantees that an invariant cannot be acquired twice,
or in other words, that two threads cannot be in a critical section at the same
time. The unique token involved in this protocol is the one that we expose to
the end user as “the thunderbolt”.

8 Application: Union-Find in Iris®®

As an illustration of the use of both time credits and time receipts, we formally
verify the functional correctness and time complexity of an implementation of
the Union-Find data structure. Our proof [17] is based on Charguéraud and
Pottier’s work [4]. We port their code from OCaml to HeapLang, and port their
proof from Separation Logic with Time Credits to Iris*®. At this point, the proof
exploits just Iris®, a subset of Iris*®. The mathematical analysis of Union-Find,
which represents a large part of the proof, is unchanged. Our contribution lies in
the fact that we modify the data structure to represent ranks as machine integers
instead of unbounded integers, and exploit time receipts in Iris® to establish the
absence of overflow. We equip HeapLang with signed machine integers whose bit
width is a parameter w. Under the hypothesis loglog N < w — 1, we are able
to prove that, even though the code uses limited-width machine integers, no
overflow can occur in a feasible time. If for instance N is 263, then this condition
boils down to w > 7. Ranks can be stored in just 7 bits without risking overflow.

Time Credits and Time Receipts in Iris 21

As in Charguéraud and Pottier’s work, the Union-Find library advertises
an abstract representation predicate isUF D RV, which describes a well-formed,
uniquely-owned Union-Find data structure. The parameter D, a set of nodes, is
the domain of the data structure. The parameter R, a function, maps a node
to the representative element of its equivalence class. The parameter V, also a
function, maps a node to a payload value associated with its equivalence class.
We do not show the specification of every operation. Instead, we focus on union,
which merges two equivalence classes. We establish the following Iris®® triple:

{(isUF DRV * $(44a(|D]) + 152)}
loglog N <;u€—g N union (z,y)
. / !
yeD {AZ' isUFDR' V' x }
z2=R(z)Vz=R({y) [¢g

where the functions R’ and V' are defined as follows:!2

(R (), V' (w) = {(z, V() if R(w) = R(@) or Rw) = R(y)
(R(w), V(w)) otherwise

The hypotheses x € D and y € D and the conjunct isUF D RV in the
precondition require that z and y be two nodes in a valid Union-Find data
structure. The postcondition Az. ... describes the state of the data structure
after the operation and the return value z.

The conjunct $(44a(]D]) + 152) in the precondition indicates that union has
time complexity O(a(n)), where « is an inverse of Ackermann’s function and
n is the number of nodes in the data structure. This is an amortized bound;
the predicate isUF also contains a certain number of time credits, known as the
potential of the data structure, which are used to justify union operations whose
actual cost exceeds the advertised cost. The constants 44 and 152 differ from
those found in Charguéraud and Pottier’s specification [4] because Tris*® counts
every computation step, whereas they count only function calls. Abstracting
these constants by using O notation, as proposed by Guéneau et al. [7], would
be desirable, but we have not attempted to do so yet.

The main novelty, with respect to Charguéraud and Pottier’s specification,
is the hypothesis loglog N < w — 1, which is required to prove that no overflow
can occur when the rank of a node is incremented. In our proof, N and w are
parameters; once their values are chosen, this hypothesis is easily discharged,
once and for all. In the absence of time receipts, we would have to publish the
hypothesis loglogn < w — 1, where n is the cardinal of D, forcing every (direct
and indirect) user of the data structure to keep track of this requirement.

For the proof to go through, we store n time receipts in the data structure:
that is, we include the conjunct Xn, where n stands for |D|, in the definition of
the invariant isUF D R V. The operation of creating a new node takes at least one

12 This definition of R’ and V' has free variables x, y, z, therefore in reality must appear
inside the postcondition. Here, it is presented separately, for greater readability.

22 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

step, therefore produces one new time receipt, which is used to prove that the
invariant is preserved by this operation. At any point, then, from the invariant,
and from the basic laws of time receipts, we can deduce that n < N holds.
Furthermore, it is easy to show that a rank is at most logn. Therefore, a rank
is at most log N. In combination with the hypothesis loglog N < w — 1, this
suffices to prove that a rank is at most 2¥~! — 1, the largest signed machine
integer, and therefore that no overflow can occur in the computation of a rank.

Clochard et al. [5, §2] already present Union-Find as a motivating example
among several others. They write that “there is obviously no danger of arithmetic
overflow here, since [ranks| are only obtained by successive increments by one”.
This argument would be formalized in their system by representing ranks as
either “one-time” or “peano” integers (in our terminology, clocks or snapclocks).
This argument could be expressed in Iris®%, but would lead to requiring log N <
w — 1. In contrast, we use a more refined argument: we note that ranks are
logarithmic in n, the number of nodes, and that n itself can never overflow. This
leads us to the much weaker requirement loglog N < w — 1, which means that
a rank can be stored in very few bits. We believe that this argument cannot be
expressed in Clochard et al.’s system.

9 Discussion

One feature of Iris and HeapLang that deserves further discussion is concur-
rency. Iris is an evolution of Concurrent Separation Logic, and HeapLang has
shared-memory concurrency. How does this impact our reasoning about time?
At a purely formal level, this does not have any impact: Theorems 1, 2, 3 and
their proofs are essentially oblivious to the absence or presence of concurrency
in the programming language. At a more informal level, though, this impacts
our interpretation of the real-world meaning of these theorems. Whereas in a
sequential setting a “number of computation steps” can be equated (up to a
constant factor) with “time”, in a concurrent setting, a “number of computation
steps” is referred to as “work”, and is related to “time” only up to a factor of p,
the number of processors. In short, our system measures work, not time. The
number of available processors should be taken into account when choosing a
specific value of N: this value must be so large that N computation steps are
infeasible even by p processors. With this in mind, we believe that our system
can still be used to prove properties that have physical relevance.

In short, our new program logics, Iris®, Iris¥, and Iris®%, tolerate concurrency.
Yet, is it fair to say that they have “good support” for reasoning about concur-
rent programs? We believe not yet, and this is an area for future research. The
main open issue is that we do not at this time have good support for reasoning
about the time complexity of programs that perform busy-waiting on some re-
source. The root of the difficulty, already mentioned during the presentation of
thunks (§7.1), is that one thread can fail to make progress, due to interference
with another thread. A retry is then necessary, wasting time. In a spin lock, for
instance, the “compare-and-set” (CAS) instruction that attempts to acquire the

Time Credits and Time Receipts in Iris 23

lock can fail. There is no bound on the number of attempts that are required
until the lock is eventually acquired. Thus, in Iris®, we are currently unable to
assign any specification to the lock method of a spin lock.

In the future, we wish to take inspiration from Hoffmann, Marmar and
Shao [9], who use time credits in Concurrent Separation Logic to establish the
lock-freedom of several concurrent data structures. The key idea is to formalize
the informal argument that “failure of a thread to make progress is caused by
successful progress in another thread”. Hoffmann et al. set up a “quantitative
compensation scheme”, that is, a protocol by which successful progress in one
thread (say, a successful CAS operation) must transmit a number of time credits
to every thread that has encountered a corresponding failure and therefore must
retry. Quite interestingly, this protocol is not hardwired into the reasoning rule
for CAS. In fact, CAS itself is not primitive; it is encoded in terms of an atomic
{ ...} construct. The protocol is set up by the user, by exploiting the basic tools
of Concurrent Separation Logic, including shared invariants. Thus, it should be
possible in Iris® to reproduce Hoffmann et al.’s reasoning and to assign useful
specifications to certain lock-free data structures. Furthermore, we believe that,
under a fairness assumption, it should be possible to assign Iris® specifications
also to coarse-grained data structures, which involve locks. Roughly speaking,
under a fair scheduler, the maximum time spent waiting for a lock is the max-
imum number of threads that may compete for this lock, multiplied by the
maximum cost of a critical section protected by this lock. Whether and how this
can be formalized is a topic of future research.

The axiom ¥ N =+ False comes with a few caveats that should be mentioned.
The same caveats apply to Clochard et al.’s system [5], and are known to them.

One caveat is that it is possible in theory to use this axiom to write and justify
surprising programs. For instance, in Iris¥, the loop “for i =1 to N do () done”
satisfies the specification {True} — {False}: that is, it is possible to prove that this
loop “never ends”. As a consequence, this loop also satisfies every specification
of the form {True} — {®}. On the face of it, this loop would appear to be a
valid solution to every programming assignment! In practice, it is up to the user
to exhibit taste and to refrain from exploiting such a paradox. In reality, the
situation is no worse than that in plain Iris, a logic of partial correctness, where
the infinite loop “while true do () done” also satisfies {True} — {False}.

Another important caveat is that the compiler must in principle be instructed
to never optimize ticks away. If, for instance, the compiler was allowed to recog-
nize that the loop “for i =1 to N do () done” does nothing, and to replace this
loop with a no-op, then this loop, which according to Iris¥ “never ends”, would
in reality end immediately. We would thereby be in danger of proving that a
source program cannot crash unless it is allowed to run for centuries, whereas
in reality the corresponding compiled program does crash in a short time. In
practice, this danger can be avoided by actually instrumenting the source code
with tick() instructions and by presenting tick to the compiler as an unknown
external function, which cannot be optimized away. However, this seems a pity,
as it disables many compiler optimizations.

24 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

We believe that, despite these pitfalls, time receipts can be a useful tool. We
hope that, in the future, better ways of avoiding these pitfalls will be discovered.

10 Related work

Time credits in an affine Separation Logic are not a new concept. Atkey [1]
introduces them in the setting of Separation Logic. Pilkiewicz and Pottier [19]
exploit them in an informal reconstruction of Danielsson’s type discipline for
lazy thunks [6], which itself is inspired by Okasaki’s work [18]. Several authors
subsequently exploit time credits in machine-checked proofs of correctness and
time complexity of algorithms and data structures [4,7,21]. Hoffmann, Marmar
and Shao [9], whose work was discussed earlier in this paper (§9), use time credits
in Concurrent Separation Logic to prove that several concurrent data structure
implementations are lock-free.

At a metatheoretic level, Charguéraud and Pottier [4] provide a machine-
checked proof of soundness of a Separation Logic with time credits. Haslbeck
and Nipkow [8] compare three program logics that can provide worst-case time
complexity guarantees, including Separation Logic with time credits.

To the best of our knowledge, affine (exclusive and persistent) time receipts
are new, and the axiom X N =1 False is new as well. It is inspired by Clochard
et al’s idea that “programs cannot run for centuries” [5], but distills this idea
into a simpler form.

Our implementation of thunks and our reconstruction of Okasaki’s debits [18]
in terms of credits are inspired by earlier work [6,19]. Although Okasaki’s analysis
assumes a sequential setting, we adapt it to a concurrent setting by explicitly
forbidding concurrent operations on thunks; to do so, we rely on Iris nonatomic
invariants. In contrast, Danielsson [6] views thunks as a primitive construct in an
otherwise pure language. He equips the language with a type discipline, where
the type Thunk, which is indexed with a debit, forms a monad, and he provides
a direct proof of type soundness. The manner in which Danielsson inserts tick
instructions into programs is a precursor of our tick translation; this idea can
in fact be traced at least as far back as Moran and Sands [16]. Pilkiewicz and
Pottier [19] sketch an encoding of debits in terms of credits. Because they work in
a sequential setting, they are able to install a shared invariant by exploiting the
anti-frame rule [20], whereas we use Iris’ nonatomic invariants for this purpose.
The anti-frame rule does not rule out reentrancy, so they must detect it at
runtime, whereas in our case both concurrency and reentrancy are ruled out by
our use of nonatomic invariants.

Madhavan et al. [15] present an automated system that infers and verifies
resource bounds for higher-order functional programs with thunks (and, more
generally, with memoization tables). They transform the source program to an
instrumented form where the state is explicit and can be described by monotone
assertions. For instance, it is possible to assert that a thunk has been forced
already (which guarantees that forcing it again has constant cost). This seems
analogous in Okasaki’s terminology to asserting that a thunk has zero debits,

Time Credits and Time Receipts in Iris 25

also a monotone assertion. We presently do not know whether Madhavan et al.’s
system could be encoded into a lower-level program logic such as Iris®; it would
be interesting to find out.

11 Conclusion

We have presented two mechanisms, namely time credits and time receipts, by
which Iris, a state-of-the-art concurrent program logic, can be extended with
means of reasoning about time. We have established soundness theorems that
state precisely what guarantees are offered by the extended program logics Iris®,
Iris¥, and Iris*®. We have defined these new logics modularly, by composing Iris
with a program transformation. The three proofs follow a similar pattern: the
soundness theorem of Iris is composed with a simulation lemma about the tick
translation. We have illustrated the power of the new logics by reconstructing
Okasaki’s debit-based analysis of thunks, by reconstructing Clochard et al.’s
technique for proving the absence of certain integer overflows, and by presenting
an analysis of Union-Find that exploits both time credits and time receipts.

One limitation of our work is that all of our metatheoretic results are specific
to HeapLang, and would have to be reproduced, following the same pattern, if
one wished to instantiate Iris®® for another programming language. It would be
desirable to make our statements and proofs generic. In future work, we would
also like to better understand what can be proved about the time complexity
of concurrent programs that involve waiting. Can the time spent waiting be
bounded? What specification can one give to a lock, or a thunk that is protected
by a lock? A fairness hypothesis about the scheduler seems to be required, but it
is not clear yet how to state and exploit such a hypothesis. Hoffmann, Marmar
and Shao [9] have carried out pioneering work in this area, but have dealt only
with lock-free data structures and only with situations where the number of
competing threads is fixed. It would be interesting to transpose their work into
Iris® and to develop it further.

References

1. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in
Computer Science 7(2:17) (2011)

2. Birkedal, L.: Lecture 11: CAS and spin locks. https://iris-project.org/
tutorial-pdfs/lecturell-cas-spin-lock.pdf (Nov 2017)

3. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. SIGLOG News 3(3), 47—
65 (2016)

4. Charguéraud, A., Pottier, F.: Verifying the correctness and amortized complexity
of a union-find implementation in separation logic with time credits. Journal of
Automated Reasoning (2017)

5. Clochard, M., Filliatre, J.C., Paskevich, A.: How to avoid proving the absence of
integer overflows. In: Verified Software: Theories, Tools and Experiments. Lecture
Notes in Computer Science, vol. 9593, pp. 94-109. Springer (2015)

http://bentnib.org/amortised-sep-logic-journal.pdf
https://iris-project.org/tutorial-pdfs/lecture11-cas-spin-lock.pdf
https://iris-project.org/tutorial-pdfs/lecture11-cas-spin-lock.pdf
https://iris-project.org/tutorial-pdfs/lecture11-cas-spin-lock.pdf
http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_news_9.pdf#page=49
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
https://hal.inria.fr/hal-01162661
https://hal.inria.fr/hal-01162661

26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: Principles of Programming Languages (POPL) (2008)
Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: Formalizing asymp-
totic complexity claims via deductive program verification. In: European Sympo-
sium on Programming (ESOP). Lecture Notes in Computer Science, vol. 10801,
pp. 533-560. Springer (2018)

Haslbeck, M.P.L., Nipkow, T.: Hoare logics for time bounds: A study in meta the-
ory. In: Tools and Algorithms for Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 10805, pp. 155-171. Springer (2018)
Hoffmann, J., Marmar, M., Shao, Z.: Quantitative reasoning for proving lock-
freedom. In: Logic in Computer Science (LICS). pp. 124-133 (2013)

Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the Rust programming language. PACMPL 2(POPL), 66:1-66:34 (2018)
Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
International Conference on Functional Programming (ICFP). pp. 256-269 (2016)
Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming 28, €20 (2018)

Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: Principles of Programming Languages (POPL). pp. 637-650 (2015)

Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: European Symposium on
Programming (ESOP). Lecture Notes in Computer Science, vol. 10201, pp. 696—
723. Springer (2017)

Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for
higher-order functions with memoization. In: Principles of Programming Languages
(POPL). pp. 330-343 (2017)

Moran, A., Sands, D.: Improvement in a lazy context: An operational theory for
call-by-need. In: Principles of Programming Languages (POPL). pp. 43-56 (1999)
Mével, G., Jourdan, J.H., Pottier, F.: Time credits and time receipts in Iris — Coq
proofs. https://gitlab.inria.fr/gmevel/iris-time-proofs (Oct 2018)
Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1999)

Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Types in Language
Design and Implementation (TLDI) (2011)

Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In:
Logic in Computer Science (LICS). pp. 331-340 (2008)

Zhan, B., Haslbeck, M.P.L.: Verifying asymptotic time complexity of imperative
programs in Isabelle. In: International Joint Conference on Automated Reasoning
(2018)

A Time Credit Initialization

This appendix provides a sketch of the proof of Lemma 6.

The ghost state that we allocate, and the invariant that we impose, must

allow expressing the intuitive idea that the assertion $n represents the exclusive
ownership of an n-unit “share” of the value currently stored in the counter c. This

http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://gallium.inria.fr/~fpottier/publis/gueneau-chargeraud-pottier-esop2018.pdf
http://gallium.inria.fr/~fpottier/publis/gueneau-chargeraud-pottier-esop2018.pdf
https://www21.in.tum.de/~nipkow/pubs/tacas18.pdf
https://www21.in.tum.de/~nipkow/pubs/tacas18.pdf
http://www.cs.cmu.edu/~janh/papers/lockfree2013.pdf
http://www.cs.cmu.edu/~janh/papers/lockfree2013.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
http://iris-project.org/pdfs/2016-icfp-iris2-final.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
http://plv.mpi-sws.org/iris/paper.pdf
http://iris-project.org/pdfs/2017-esop-iris3-final.pdf
http://iris-project.org/pdfs/2017-esop-iris3-final.pdf
http://lara.epfl.ch/~kandhada/orb-popl17.pdf
http://lara.epfl.ch/~kandhada/orb-popl17.pdf
http://www.cse.chalmers.se/~dave/papers/cbneed-theory.pdf
http://www.cse.chalmers.se/~dave/papers/cbneed-theory.pdf
https://gitlab.inria.fr/gmevel/iris-time-proofs
https://gitlab.inria.fr/gmevel/iris-time-proofs
https://gitlab.inria.fr/gmevel/iris-time-proofs
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://gallium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://arxiv.org/abs/1802.01336
http://arxiv.org/abs/1802.01336

Time Credits and Time Receipts in Iris 27

is an archetypal example of what can be done with Iris, so, assuming familiarity
with Iris, the construction is not difficult.

The first step is to allocate a ghost location ~y, whose content is an element
of the “authoritative monoid” AUTH(N, +) [12]. This step gives us the ability to
express two forms of assertions about . The “nonauthoritative” assertion ‘ om ‘7
represents a contribution of m units to v, whereas the “authoritative” assertlon
‘ro n ry represents a guarantee that the sum of all contributions to 7 currently in
eX1stence is at most n. We initialize the “ghost locatlon ~ with the value n, so
that, initially, we hold the conjunction ! e 7k ; on: 1

The second step is to install an Iris invariant that ties the ghost location ~
and the physical counter ¢ together. Our invariant is as follows:

dn (c»—)n *‘.};1)

This invariant asserts that, at all times, the value n that i is stored in the counter ¢

is at least as high as the sum of all (ghost) contributions | o m 7 in existence. By

installing this 1py§r1ant we lose the points-to assertion ¢ r—> n and the authorita-
tive assertion ! on\ . In return, once installed, an Iris invariant becomes shared:
every thread can access the invariant for the duration of an atomic instruction.
This is exploited (below) in the proof that tick. satisfies its specification.

The previous two steps, together, form the view shift that appears in the
statement of Lemma 6. The next step in the proof of the lemma is to provide
a witness for the existential quantification over $. Our concrete definition of the
Iris predicate $ is as follows:

r——-1

A Y
$n =jon

That is, a time credit is just a (ghost) contribution to . The nonauthoritative
assertion ; 70]}}7, which we still have at hand at this point, allows us to justify
the conjunct $n in the right-hand side of the view shift.

There remains to justify the conjunct TCIntf ($) tick. in the right-hand side
of the view shift. It is easy to check that the three axioms of time credits are
satisfied. The law $(ny + n2) = $n1 * $no, in partlcular follows immediately

from the basic law ! ,O,(ﬁl,i", @2) = ;loﬁ@l jv * ‘ oMy 7. The last point that remains
to be checked is the fact that tick., whose code appears in Figure 4, satisfies the
specification of tick, which appears in Figure 1. There, the 1nvar1ant 1s opened
once, to justify the read operation ! ¢. The precondition $1 is just ‘79 l Y , which,
together with the invariant, guarantees that the result & of this read operation
is nonzero. This implies that oops (in this case, crash) is not executed. The
invariant is then opened again, to justify the CAS operation CAS(¢, k,k — 1). In
the case where this operation succeeds a fra@@—preservmg upgdﬁqtﬁeilisiperformed

so as to change the conjunction 'ek! * o1l into just e (k—1)!" and re-
establish the invariant.

B Time Receipt Initialization

This appendix provides a sketch of the proof of Lemma 7.

28 Glen Mével, Jacques-Henri Jourdan, and Francois Pottier

The ingredients are the same as in our earlier proof of Lemma 6 (§A). This
time, we allocate two ghost locations v and ¢, whose values inhabit the monoids
AUuTH(N, +) and AUTH(N, max), respectively. We install an invariant that ties
this ghost state with the physical state of the counter c:

——=16

I (er (=m0 s fonl” el <)

Then, we provide concrete definitions for the Iris predicates X and X:

___ P ——

- AT Y A
Xm=om,| Em =iom

In short, the counter ¢ stores the number of steps that can still be taken before
tick. executes loop () and diverges. This number is always of the form N —n—1,
where n is the number of steps that have already been taken. The above invariant
guarantees that, at all times, the following properties hold:

1. n is at least the sum of all exclusive receipts X m currently in existence;
2. n is at least the value m of any persistent receipt ¥ m currently in existence.
3. n is less than N.

In light of the above invariant and definitions, it is straightforward to check that
the interface TRIntf (X) (R) tick. (Figure 3) is satisfied.
For instance, to check that the law X N =+ False holds, it suffices to open

o Y r-=-18 .
the invariant, confront the assertions 'o N and ‘onj to obtain N < n, and

combine this inequality with the inequality n < NN so as to derive a contradiction.

The fact that tick. (Figure 4) satisfies the specification in Figure 3 is also
easily verified. In contrast with the case of time credits, where k£ could not be
zero and oops was never executed, in the present case, k can be zero, and oops
can be executed. Fortunately, here, oops is loop, whose postcondition is False,
so, in the case where k is zero, tick. trivially satisfies its specification. In the
case where k is nonzero, we get N —n — 1 > 0, that is, n+ 1 < N, so that, after
decrementing ¢, which amounts to incrementing n, we are able to re-establish
the invariant.

	Time Credits and Time Receipts in Iris

