Time credits and time receipts in Iris

Glen Mével, Jacques-Henri Jourdan, François Pottier

Inria
CNRS, LRI, Univ. Paris Sud, Université Paris-Saclay

April 8, 2019
Prague

This talk

- recent works: time credits aim: prove an upper bound on the running time of a program
- this talk: time receipts aim: assume an upper bound on the running time of a program

These are dual notions.

- recent works: time credits
aim: prove an upper bound on the running time of a program
- this talk: time receipts aim: assume an upper bound on the running time of a program

These are dual notions.

Example: a unique symbol generator

The function genSym returns fresh symbols:

$$
\begin{aligned}
& \text { let lastSym = ref } 0 \\
& \text { let } \operatorname{genSym}()= \\
& \quad \text { lastSym }:=\text { ! lastSym }+1 \text {; } \\
& \quad \text { ! lastSym }
\end{aligned}
$$

Example: a unique symbol generator

The function genSym returns fresh symbols:

$$
\begin{aligned}
& \text { let lastSym }=\text { ref } 0 \quad\left({ }^{*} \text { unsigned 64-bit integer }{ }^{*}\right) \\
& \text { let } \operatorname{genSym}()= \\
& \quad \text { lastSym }:=\text { ! lastSym }+1 ; \quad\left({ }^{*} \text { may overflow! }{ }^{*}\right) \\
& \text { ! lastSym }
\end{aligned}
$$

Strictly speaking, this code is not correct.

Example: a unique symbol generator

The function genSym returns fresh symbols:

$$
\begin{aligned}
& \text { let lastSym }=\text { ref } 0 \quad\left({ }^{*} \text { unsigned 64-bit integer }{ }^{*}\right) \\
& \text { let } \operatorname{genSym}()= \\
& \quad \text { lastSym }:=\text { ! lastSym }+1 ; \quad\left(*^{*} \text { may overflow! }{ }^{*}\right) \\
& \quad \text { ! lastSym }
\end{aligned}
$$

Strictly speaking, this code is not correct.

We still want to prove that this code is "correct" in some sense.

The Bounded Time Hypothesis [Clochard et al., 2015]

Counting from 0 to 2^{64} takes centuries with a modern processor.
Therefore, this overflow won't happen in a lifetime.
How to express this informal argument in separation logic?

The Bounded Time Hypothesis [Clochard et al., 2015]

Counting from 0 to 2^{64} takes centuries with a modern processor.
Therefore, this overflow won't happen in a lifetime.
How to express this informal argument in separation logic?
In this talk:

- We answer this question using time receipts.
- We prove that Iris, extended with time receipts, is sound.

A closer look at the problem

Specification of genSym

A specification (in separation logic):

$$
P \emptyset * \forall S .\left(\begin{array}{l}
\{P S\} \\
\operatorname{genSym}() \\
\{\lambda n . n \notin S * P(S \cup\{n\})\}
\end{array}\right)
$$

for some proposition $P S$ which represents:

- the ownership of the generator;
- the fact that S is the set of all symbols returned so far.

Tentative proof of genSym

let lastSym = ref 0

> let $\operatorname{genSym}()=$ $$
\text { lastSym }:=\text { ! lastSym }+1 ;
$$

! lastSym

Tentative proof of genSym

\{\}
let lastSym $=$ ref 0
$\{P \emptyset\}$
\{P S $\}$
let $\operatorname{genSym}()=$
lastSym $:=$! lastSym +1 ;

! lastSym

$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Tentative proof of genSym

Invariant: $P S \triangleq$ lastSym $\mapsto \max S$
\{\}
let lastSym $=$ ref 0
$\{P \emptyset\}$
\{P S $\}$
let $\operatorname{genSym}()=$
lastSym $:=$! lastSym +1 ;

! lastSym

$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Tentative proof of genSym

Invariant: $P S \triangleq$ lastSym $\mapsto \max S$
\{\}
let lastSym = ref 0
$\{$ lastSym $\mapsto 0\}$
$\{P \emptyset\}$
$\{P S\}$
let $\operatorname{genSym}()=$
\{lastSym $\mapsto \max S\}$
lastSym := ! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}}\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}}\right\}$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n\}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Tentative proof of genSym

Invariant: $P S \triangleq$ lastSym $\mapsto \max S$

$$
\begin{aligned}
& \} \\
& \text { let lastSym }=\text { ref } 0 \\
& \{\text { lastSym } \mapsto 0\} \\
& \{P \emptyset\}
\end{aligned}
$$

```
\{P S \(\}\)
```

let $\operatorname{genSym}()=$
\{lastSym $\mapsto \max S\}$
lastSym := ! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}}\right\}$

Wrong $\left\{\lfloor\max S+1\rfloor 2^{64} \notin S *\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}}\right\}$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n\}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

An unpleasant workaround: patch the specification

We may add a precondition to exclude any chance of overflow:

$$
P \emptyset * \forall S \cdot\left(\begin{array}{l}
\left\{P S *|S|<2^{64}-1\right\} \\
\operatorname{genSym}() \\
\{\lambda n . n \notin S * P(S \cup\{n\})\}
\end{array}\right)
$$

This pollutes user proofs with cumbersome proof obligations... which may even be unprovable!

Time receipts in action

Time receipts in separation logic

To count execution steps, we introduce time receipts.
Each step produces one time receipt, and only one:

$$
\{\text { True }\} \quad x+y \quad\left\{\lambda z . z=\lfloor x+y\rfloor 2^{64} * \overline{\underline{\mathbf{\Sigma}}} 1\right\}_{\mathbf{x}}
$$

Time receipts sum up:

$$
\underbrace{\overline{\underline{\mathbf{x}}} 1 * \ldots * \overline{\underline{\underline{\Sigma}}} 1}_{n} \equiv \overline{\underline{\underline{\Sigma}}} n
$$

But time receipts do not duplicate (separation logic):

$$
\underline{\underline{\underline{E}}} 1 \nLeftarrow \underline{\underline{\underline{E}}} 1 * \underline{\underline{\underline{E}}} 1
$$

Therefore, $\underline{\underline{\mathbf{x}}} n$ is a witness that (at least) n steps have been taken.

Proof of genSym using time receipts

Invariant: $P S \triangleq$ lastSym $\mapsto \max S$
\{\}
let lastSym = ref 0
\{lastSym $\mapsto 0$ \}
$\{P \emptyset\}$
$\{P S\}$
let $\operatorname{genSym}()=$
$\{$ lastSym \mapsto max S \}
lastSym $:=$! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}}\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor 2^{64}\right\}$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n\}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Proof of genSym using time receipts

Invariant: PS \triangleq lastSym $\mapsto \max S * \underline{\overline{\underline{z}}(m a x S})$
$\}$
let lastSym = ref 0
$\{$ lastSym $\mapsto 0$ \}

We keep track of elapsed time.
$\{P S\}$
let $\operatorname{genSym}()=$
$\{$ lastSym $\mapsto \max S\}$
lastSym $:=$! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}}\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor 2^{64}\right\}$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n\}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Proof of genSym using time receipts

Invariant: $P S \triangleq$ lastSym $\mapsto \max S * \overline{\underline{\underline{E}}(\max S)}$
\{\}
let lastSym = ref 0
$\{$ lastSym $\mapsto 0 * \underline{\underline{\underline{玉}}} 0\}$
$\{P \emptyset\}$
\{P S $\}$
let $\operatorname{genSym}()=$
\{lastSym $\mapsto \max S * \underline{\underline{\underline{玉}} \max S\}}$
lastSym $:=$! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{E}}}(\max S+1)\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.$ lastSym $\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \overline{\underline{\underline{E}}}(\max S+1)$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n * \underline{\underline{\underline{E}} n\}}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Proof of genSym using time receipts

```
Invariant: \(P S \triangleq\) lastSym \(\mapsto \max S * \overline{\underline{\underline{\underline{E}}}(\max S)}\)
```

\{\}
let lastSym = ref 0
$\{$ lastSym $\mapsto 0 *$ 프 0$\}$
$\{P \emptyset\}$

Initialization

 We obtain 0 time receipts for free.$\{P S\}$
let $\operatorname{genSym}()=$
$\{$ lastSym $\mapsto \max S * \underline{\underline{\underline{玉}} \max S\}}$
lastSym := ! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{E}}}(\max S+1)\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.$ lastSym $\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \overline{\underline{\underline{E}}}(\max S+1)$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n * \underline{\underline{\underline{E}} n\}}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Proof of genSym using time receipts

Invariant: $P S \triangleq$ lastSym $\mapsto \max S * \mathbf{\underline { \underline { \mathbf { E } } } (\operatorname { m a x } S)}$
\{\}
let lastSym = ref 0 $\{$ lastSym $\mapsto 0 * \mathbf{\underline { \underline { E } }} 0\}$ $\{P \emptyset\}$ lastSym := ! lastSym + 1;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{\mathbf{z}}}}(\max S+1)\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.$ lastSym $\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \overline{\underline{\underline{z}}}(\max S+1)$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n * \mathbf{\underline { \underline { 玉 } }} n\}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

The Bounded Time Hypothesis with time receipts

Let N be an arbitrary integer.
We posit the Bounded Time Hypothesis:

$$
\overline{\underline{\underline{I}}} N \vdash \text { False }
$$

In other words, we assume that no execution lasts for N steps.

The larger N, the weaker this assumption.

Consequence:

$$
\underline{\underline{\underline{\underline{I}}} n \vdash n<N}
$$

Proof of genSym using time receipts and the BTH

Invariant: $P S \triangleq$ lastSym $\mapsto \max S * \overline{\underline{\underline{E}}(\max S)}$
\{\}
let lastSym = ref 0
$\{$ lastSym $\mapsto 0 * \underline{\underline{\underline{E}} 0\}}$
$\{P \emptyset\}$
$\{P S\}$
let $\operatorname{genSym}()=$
$\{$ lastSym $\mapsto \max S *$ 프 max $S\}$
lastSym :=! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{玉}}}(\max S+1)\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.$ lastSym $\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{E}}(\max S+1)}$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n * \underline{\underline{\underline{玉}} n\}}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Proof of genSym using time receipts and the BTH

```
Invariant: PS \(\triangleq\) lastSym \(\mapsto \max S * \overline{\underline{\underline{\underline{E}}}(\max S)}\)
    \{\}
    let lastSym \(=\) ref 0
    \(\{\) lastSym \(\mapsto 0 * \mathbf{\underline { \underline { 玉 } }} 0\}\)
    \(\{P \emptyset\}\)
\(\{P S\}\)
let \(\operatorname{genSym}()=\)
    \(\{\) lastSym \(\mapsto \max S * \underline{\underline{\underline{E}}} \max S\}\)
    lastSym :=! lastSym +1 ;
    \(\left\{\right.\) lastSym \(\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{E}}}(\max S+1)\right\}\)
    \(\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S *\right.\) lastSym \(\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underset{\underline{\underline{E}}(\max S+1)}{ }\)
    ! lastSym
    \(\{\lambda n . n \notin S *\) lastSym \(\mapsto n * \underline{\underline{\underline{玉}} n\}}\)
\(\{\lambda n . n \notin S * P(S \cup\{n\})\}\)
```

Proof of genSym using time receipts and the BTH
Invariant：$P S \triangleq$ lastSym $\mapsto \max S * \underline{\underline{\underline{E}}(\max S)}$
\｛\}
let lastSym＝ref 0
$\{$ lastSym $\mapsto 0 * \underline{\underline{\underline{E}} 0\}}$
$\{P \emptyset\}$

Bounded Time

We further require $N \leq 2^{64}$ ．
\｛PS\}
let $\operatorname{genSym}()=$
$\{$ lastSym $\mapsto \max S * \underline{\underline{\underline{玉}} \max S\}}$
lastSym ：＝！lastSym +1 ；
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{玉}}}(\max S+1)\right\}$
$\left\{\lfloor\max S+1\rfloor_{2^{64}} \notin S * \operatorname{lastSym} \mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{\underline{E}}}(\max S+1)}\right.$
！lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n * \underline{\underline{\underline{玉}} n\}}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Proof of genSym using time receipts and the BTH
Invariant: $P S \triangleq$ lastSym $\mapsto \max S * \underline{\underline{\underline{E}}(\max S)}$
\{\}
let lastSym $=$ ref 0
$\{$ lastSym $\mapsto 0 * \underline{\underline{\underline{E}} 0\}}$
$\{P \emptyset\}$

No overflow

Then, $\max S+1<2^{64}$.
\{PS\}
let $\operatorname{genSym}()=$
$\{$ lastSym $\mapsto \max S *$ 프 max $S\}$
lastSym $:=$! lastSym +1 ;
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{E}}}(\operatorname{may} S+1)\right\}$
$\{\max S+1 \quad \notin S *$ lastSym $\mapsto \max S+1$
! lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n * \underline{\underline{\underline{玉}} n\}}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

* $\underline{\underline{\underline{E}}}(\max S+1)$

Proof of genSym using time receipts and the BTH

Invariant：PS \triangleq lastSym $\mapsto \max S * \mathbf{\underline { \underline { \underline { E } } } (\operatorname { m a x } S)}$
\｛\}
let lastSym $=$ ref 0
$\{$ lastSym $\mapsto 0 * \underline{\underline{\underline{E}} 0\}}$
$\{P \emptyset\}$
$\{P S\}$
let $\operatorname{genSym}()=$
$\{$ lastSym $\mapsto \max S * \underline{\underline{\underline{玉}} \max S\}}$
lastSym ：＝！lastSym +1 ；
$\left\{\right.$ lastSym $\left.\mapsto\lfloor\max S+1\rfloor_{2^{64}} * \underline{\underline{\underline{玉}}}(\max S+1)\right\}$
$\{\max S+1 \quad \notin S *$ lastSym $\mapsto \max S+1$
＊$\overline{\underline{\underline{\Sigma}}}(\max S+1)$
！lastSym
$\{\lambda n . n \notin S *$ lastSym $\mapsto n * \underline{\underline{\underline{玉}} n\}}$
$\{\lambda n . n \notin S * P(S \cup\{n\})\}$

Iris², a program logic with time receipts

Time receipts satisfy the Bounded Time Hypothesis:

$$
\overline{\underline{\underline{I}}} N \vdash \text { False }
$$

Each step produces one time receipt; for instance:

$$
\{\text { True }\} \quad x+y \quad\left\{\lambda z . z=\lfloor x+y\rfloor 2^{64} * \overline{\underline{\underline{\mathbf{I}}} 1}\right\}_{\mathbf{z}}
$$

|ris², a program logic with time receipts

Time receipts satisfy the Bounded Time Hypothesis:

$$
\overline{\underline{\underline{x}}} N \vdash \text { False }
$$

Each step produces one time receipt; for instance:

$$
\{\text { True }\} \quad x+y \quad\left\{\lambda z . z=\lfloor x+y\rfloor 2^{64} * \overline{\underline{\underline{\mathbf{I}}} 1}\right\}_{\mathbf{z}}
$$

We can obtain zero time receipts unconditionally:

```
\underline{\underline{E}}0
```

Time receipts are additive:

$$
\underline{\underline{\underline{\bar{x}}}} m * \overline{\underline{\underline{\underline{E}}}} n \equiv \overline{\underline{\overline{\mathbf{x}}}}(m+n)
$$

Soundness of Iris with time receipts

Soundness of Iris?

We want our program logic Iris ${ }^{\underline{\underline{\bar{Z}}}}$ to satisfy this property:

Theorem (Soundness of Iris ${ }^{\mathbf{Z}}$)

If the following Iris ${ }^{\underline{\underline{\underline{Z}}}}$ triple holds:

```
{True}e{_}_
```

then e cannot crash until N steps have been taken.
We say that "e is ($N-1$)-safe".

Crashing means trying to step while in a stuck configuration; for example, dereferencing a non-pointer.

Proof sketch of the soundness theorem

We use Iris as a model of Iris ${ }^{\underline{\underline{\underline{Z}}}}$.

$$
\{P\} e\{\varphi\}_{\mathbf{z}} \triangleq\{P\}\langle\langle e\rangle\rangle\{\varphi\}
$$

The transformation $\langle\langle\cdot\rangle\rangle$ inserts ticks (see next slides).
The proof then works as follows:

$$
\{\text { True }\}\langle\langle e\rangle\rangle\{-\}
$$

Soundness theorem of Iris [Jung et al., 2015]
$\langle\langle e\rangle\rangle$ is safe
Simulation lemma
e is $(N-1)$-safe

The program transformation

We keep track of the number of steps using a global counter c, initialized with 0 .

The transformation inserts one tick instruction per operation.

$$
\left\langle\left\langle e_{1}+e_{2}\right\rangle\right\rangle \triangleq \operatorname{tick}\left(\left\langle\left\langle e_{1}\right\rangle\right\rangle+\left\langle\left\langle e_{2}\right\rangle\right\rangle\right)
$$

tick increments c. On its $N^{\text {th }}$ execution, it does not return.

$$
\begin{aligned}
& \text { let tick } x= \\
& \qquad!c:=!c+1 \\
& \text { if ! } c<N \text { then } x \text { else loop }()
\end{aligned}
$$

Idea: transform a program that runs for too long into a program that never ends, hence is safe.

The simulation lemma

This program transformation does satisfy the desired lemma:

Lemma (Simulation)

If $\langle\langle e\rangle\rangle$ is safe (i.e. it cannot crash), then e is $(N-1)$-safe (i.e. it cannot crash until N steps have been taken).

The model of time receipts

The transformation maintains the invariant ! $c<N$.
$\mathbf{\underline { Z }} 1$ is modeled as an exclusive portion of the value of the counter c (Iris features used: authoritative monoidal resource, invariant).

In particular, $\overline{\underline{\underline{\Sigma}}} n \vdash!c \geq n$. Hence, $\overline{\underline{\mathbf{x}}} N \vdash$ False.
All other axioms of time receipts are realised as well.

Conclusion

Conclusion

Contributions (new):

	Soundness	Application
Time credits	\checkmark	Reconstruction of Okasaki and Danielsson's thunks (amortized analysis)
Time receipts (exclusive / persistent)	\checkmark	Reconstruction of Clochard et al.'s overflow-free integers
Time credits and time receipts	\checkmark	Proof of Union-Find: complexity, absence of overflow in ranks

Defined within Iris, machine-checked with Coq
Open question: Can we prove useful facts about concurrent code?

Thank you for your time.

What about concurrency?

Iris is a concurrent separation logic; thus, our program logics already support concurrency: they measure the work (total number of operations in all threads).

```
let tick x =
    if(FAA c 1<N-1) then x else loop()
```

What about measuring the span (running time of the longest-living thread)?
A path to explore: a separate notion of time receipt for each thread, with a rule to clone time receipts of the calling thread when forking.

Compiling code analysed with time receipts

For time receipt proofs to be valid, we need to forbid optimizations! Otherwise, programs may compute faster than expected.
For example:

```
for i from 1 to N do
    ()
done;
```



```
    * anything below may be unsafe,
    * but it shouldn't be reached in a lifetime... *)
crash ()
```

A compiler may optimize it to:

```
(* Too bad! *)
crash()
```

A solution: insert actual tick operations and make them opaque.

We implement the Union-Find with ranks stored in machine words. While proving the correctness of the algorithm, we also prove

- its complexity (using time credits)
- and the absence of overflows for ranks (using time receipts).

Granted that $x, y \in D$ and $\log _{2} \log _{2} N<$ word_size -1 , we show the Iris ${ }^{\$ \overline{\underline{\underline{E}}}}$ triple:

$$
\begin{aligned}
& \{\text { isUF } D R V * \$(44 \alpha(|D|)+152)\} \\
& \quad \text { union } \times y \\
& \left\{\lambda z . \text { isUF } D R^{\prime} V^{\prime} *(z=R \times \vee z=R y)\right\}_{\$ \overline{\underline{\underline{z}}}}
\end{aligned}
$$

Consequences:

- the (amortized) complexity is the inverse Ackermann function;
- if $N=2^{64}$, then word_size ≥ 8 is enough to avoid overflows.

Example: a unique symbol generator (functional version)

Code:
let makeGenSym() =
let lastSym = ref 0 in $\quad(*$ unsigned 64-bit integer *) fun () \rightarrow
lastSym := ! lastSym $+1 ; \quad\left({ }^{*}\right.$ may overflow *)
! lastSym

Specification (in higher-order separation logic):
\{True makeGenSym()
(λ genSym. $\exists P$.

$$
P \emptyset * \forall S \cdot\left(\begin{array}{l}
\{P S\} \\
\operatorname{genSym}() \\
\{\lambda n . n \notin S * P(S \cup\{n\})\}
\end{array}\right)=
$$

Alternative specification of makeGenSym

Specification (in Iris):
\{True $\}$
makeGenSym()
$\left\{\begin{array}{l}\lambda \text { genSym. } \exists \gamma . \\ \forall n .\left(\begin{array}{l}\left\{\begin{array}{l}\text { True }\} \\ \text { genSym }() \\ \left\{\lambda m . \mathrm{OwnSym}_{\gamma}(m)\right\}\end{array}\right.\end{array}\right)\end{array}\right\}$

- The ownership of the generator is shared through an invariant.
- OwnSym (m) asserts uniqueness of symbol m :
$\operatorname{OwnSym}_{\gamma}\left(m_{1}\right) * \operatorname{OwnSym}_{\gamma}\left(m_{2}\right) \rightarrow * m_{1} \neq m_{2}$

A program logic with time credits

Each step consumes one time credit; for instance:

$$
\{\$ 1\} \quad x+y \quad\left\{\lambda z . z=\lfloor x+y\rfloor_{2^{64}}\right\}_{\mathbf{z}}
$$

We can obtain zero time credits unconditionally:

$$
\vdash \$ 0
$$

Time credits are additive:

$$
\$ m * \$ n \equiv \$(m+n)
$$

Our program logic Iris ${ }^{\$}$ satisfies this property:
Theorem (Adequacy of Iris ${ }^{\text {§ }}$)
If the following Iris垔 triple holds:

$$
\{\$ n\} e\{\varphi\}_{\$}
$$

then:

- e cannot crash;
- if e computes a value v, then φv holds;
- e computes for at most n steps.

Our program logic Iris ${ }^{\underline{\underline{\underline{Z}}}}$ satisfies this property:
Theorem (Adequacy of Iris ${ }^{\overline{\mathbf{z}}}$)
If the following Iris要 triple holds:

$$
\{\text { True }\} e\{\varphi\}_{\mathbf{z}}
$$

then:

- e cannot crash until N steps have been taken;
- if e computes a value v in less than N steps, then φv holds.

A program logic with duplicable time receipts

Duplicable time receipts satisfy the Bounded Time Hypothesis:

$$
\Sigma N \vdash \text { False }
$$

Each step increments a duplicable time receipt; for instance:

$$
\{\boxtimes m\} \quad x+y \quad\left\{\lambda z . z=\lfloor x+y\rfloor_{2^{64}} * Z(m+1)\right\}_{\mathbf{z}}
$$

We can obtain zero duplicable time receipts unconditionally:

$$
\vdash \quad \boxed{ } \quad 0
$$

Duplicable time receipts obey maximum:

$$
\Sigma m * \boxtimes n \equiv \boxtimes \max (m, n)
$$

Duplicable time receipts are duplicable:

$$
\Sigma m \rightarrow \square m * \Sigma m
$$

Relation between time receipts and duplicable time receipts:

$$
\underline{\underline{\underline{\underline{I}}} m \vdash \overline{\underline{\mathbf{I}}} m * \Sigma m}
$$

Overflow-free integers (summable)

$\operatorname{IsClock}(v, n) \triangleq 0 \leq n<2^{64} * v=n * \underline{\underline{\underline{Z}}} n$

- non-duplicable
- supports addition (consumes its operands):

$$
\begin{aligned}
& \left\{\operatorname{IsClock}\left(v_{1}, n_{1}\right) * \operatorname{IsClock}\left(v_{2}, n_{2}\right)\right\} \\
& \quad v_{1}+v_{2} \\
& \left\{\lambda w . \operatorname{IsClock}\left(w, n_{1}+n_{2}\right)\right\}
\end{aligned}
$$

no overflow!

Overflow-free integers (incrementable)

$$
\operatorname{IsSnapClock}(v, n) \triangleq 0 \leq n<2^{64} * v=n * \boxtimes n
$$

- duplicable
- supports incrementation (does not consume its operand):

$$
\{\operatorname{IsSnapClock}(v, n)\}
$$

$$
v+1
$$

$\{\lambda w . \operatorname{IsSnapClock}(w, n+1)\}$
no overflow!

- prgm is a program (source code).
- Pre and Post are logical formulas.
$\{$ Pre $\}$ prgm $\{$ Post $\}$

Soundness:
"If Pre holds, then prgm won't crash."
(Partial) correctness:
"If Pre holds, then after prgm is run, Post will hold."
Total correctness:
"If Pre holds, then prgm terminates and, after prgm is run,
Post will hold."
P is a resource.
$x \mapsto v$ is an exclusive resource, its ownership cannot be shared.

- Standard logic: $P \Rightarrow P \wedge P$
- Separation logic: $P \not \neq P * P$ (resources are not duplicable)
$P * Q$ are disjoint resources.
$x \mapsto v * x \mapsto v^{\prime}$ is absurd.

Affine sep. logic: $P * Q * P$ (resources can be thrown away)

Iris is:

- an affine separation logic,
- higher-order,
- full-featured (impredicative invariants, monoidal resources...),
- very extensible,
- formalized in Coq.

