why3doc index index

# Abstract Tarjan 1972 Strongly Connected Components in Graph

The graph is represented by a pair (`vertices`, `successor`)

• `vertices` : this constant is the set of graph vertices
• `successor` : this function gives for each vertex the set of vertices directly joinable from it
The algorithm makes depth-first-search in the graph. After stacking the vertices in the (pre-)order of their visit, one finds the strongly connected components.
Fully automatic proof except 2 assertions proved in Coq.

This file is with termination proofs by easy lexicographic ordering on number of white vertices and cardinality of roots.

```

module SCCTarjan72
use import int.Int
use import int.MinMax
use import list.List
use import list.Length
use import list.Append
use import list.Mem as L
use import list.NumOcc
use import list.Elements as E
use import init_graph.GraphSetSucc
use import map.Map
use import map.Const

predicate lmem (x: 'a) (s: list 'a) = L.mem x s
function max_int (): int = cardinal vertices

lemma lmem_dec:
forall x: 'a, l: list 'a. lmem x l \/ not lmem x l

```

#### Ranks and Lists

```lemma list_simpl_r:
forall l1 "induction" l2 l: list 'a. l1 ++ l = l2 ++ l -> l1 = l2

lemma list_assoc_cons:
forall l1 l2: list 'a, x: 'a. l1 ++ (Cons x l2) = (l1 ++ (Cons x Nil)) ++ l2

predicate is_last (x: 'a) (s: list 'a) =
exists s'. s = s' ++ Cons x Nil

function rank (x: 'a) (s: list 'a): int =
match s with
| Nil -> max_int()
| Cons y s' -> if x = y && not (lmem x s') then length s' else rank x s'
end

lemma rank_not_mem:
forall x:'a, s. not lmem x s -> rank x s = max_int()

lemma rank_range:
forall x:'a, s. lmem x s -> 0 <= rank x s < length s

lemma rank_min:
forall x y:'a, s. is_last x s -> lmem y s -> rank x s <= rank y s

lemma rank_app_l:
forall x:'a, s s'. lmem x s' -> not lmem x s -> rank x (s' ++ s) = rank x s' + length s

lemma rank_app_r:
forall x:'a, s s'. lmem x s -> rank x s = rank x (s' ++ s)

(* simple lists *)

predicate simplelist (l: list 'a) = forall x. num_occ x l <= 1

lemma simplelist_tl:
forall x: 'a, l. simplelist (Cons x l) -> simplelist l /\ not lmem x l

lemma simplelist_split:
forall x: 'a, l1 "induction" l2 l3 l4. l1 ++ (Cons x l2) = l3 ++ (Cons x l4) ->
simplelist (l1 ++ (Cons x l2)) -> l1 = l3 /\ l2 = l4

lemma simplelist_hd_max_rank:
forall x y: 'a, s1 s2. s1 = Cons x s2 -> simplelist s1 -> lmem y s2 -> rank y s1 < rank x s1

lemma rank_before_suffix:
forall x y: 'a, s1 s2. simplelist (s1 ++ s2) -> is_last x s1 -> lmem y s2 ->
rank y (s1 ++ s2) < rank x (s1 ++ s2)

```

#### Sets

```
lemma inter_com:
forall s1 s2: set 'a. inter s1 s2 == inter s2 s1

forall s1 s2: set 'a, x: 'a. not mem x s2 -> inter (add x s1) s2 == inter s1 s2

lemma set_elt:
forall x: 'a, s1 s2 s3: set 'a. not mem x s3 -> union (add x s1) (diff s2 s3) == union s1 (diff (add x s2) s3)

lemma set_mem:
forall x: 'a, s1 s2 s3 s4: set 'a. s1 == union s2 (diff s3 s4) -> inter s2 s4 == empty -> mem x s1 -> not mem x s4

lemma inter_subset_inter:
forall s1 s2 s2': set 'a. inter s1 s2 = empty -> subset s2' s2 -> inter s1 s2' = empty

forall x: 'a, s s': set 'a. subset s' (add x s) -> mem x s' \/ subset s' s

forall x: 'a, s s': set 'a. union (add x s) s' == add x (union s s')

forall x: 'a, s s': set 'a. union s (add x s') == add x (union s s')

lemma elts_cons:
forall x: 'a, l: list 'a. elements (Cons x l) == add x (elements l)

lemma elts_app:
forall s s': list 'a. elements (s ++ s') == union (elements s) (elements s')

lemma simplelist_app_inter:
forall l1 l2: list 'a. simplelist (l1 ++ l2) -> inter (elements l1) (elements l2) = empty

lemma simplelist_length:
forall s: list 'a. simplelist s -> length s = cardinal (elements s)

(* sets of sets *)

function set_of (set (set 'a)): set 'a

axiom set_of_empty:
set_of empty = (empty : set 'a)

forall s: set 'a, sx. set_of (add s sx) == union s (set_of sx)

predicate one_in_set_of (sccs: set (set 'a)) =
forall x. mem x (set_of sccs) -> exists cc. mem cc sccs /\ mem x cc

clone set.FsetInduction with type t = set vertex, predicate p = one_in_set_of

lemma set_of_elt:
forall sccs: set (set vertex). one_in_set_of sccs
by forall sccs: set (set vertex). one_in_set_of sccs -> forall cc. not mem cc sccs ->

lemma elt_set_of:
forall x: 'a, cc sccs. mem x cc -> mem cc sccs -> mem x (set_of sccs)

lemma subset_set_of:
forall s s': set (set vertex). subset s s' -> subset (set_of s) (set_of s')

```

#### Paths

```
predicate reachable (x y: vertex) =
exists l. path x l y

lemma reachable_trans:
forall x y z. reachable x y -> reachable y z -> reachable x z

lemma xset_path_xedge:
forall x y l s. mem x s -> not mem y s -> path x l y ->
exists x' y'. mem x' s /\ not mem y' s /\ edge x' y' /\ reachable x x' /\ reachable y' y

```

#### Strongly connected components

```
predicate in_same_scc (x y: vertex)  =
reachable x y /\ reachable y x

predicate is_subscc (s: set vertex) =
forall x y. mem x s -> mem y s -> in_same_scc x y

predicate is_scc (s: set vertex) = not is_empty s /\
is_subscc s /\ (forall s'. subset s s' -> is_subscc s' -> s == s')

lemma same_scc_refl:
forall x. in_same_scc x x

lemma same_scc_sym:
forall x z. in_same_scc x z -> in_same_scc z x

lemma same_scc_trans:
forall x y z.
in_same_scc x y -> in_same_scc y z -> in_same_scc x z

forall x y cc. is_subscc cc -> mem x cc -> in_same_scc x y -> is_subscc (add y cc)

lemma scc_max:
forall x y cc. is_scc cc -> mem x cc -> in_same_scc x y -> mem y cc

```

#### Invariant definitions

```
type env = {ghost blacks: set vertex; ghost grays: set vertex;
stack: list vertex; sccs: set (set vertex);
sn: int; num: map vertex int}

predicate wf_color (e: env) =
let {stack = s; blacks = b; grays = g; sccs = ccs} = e in
subset (union g b) vertices /\
inter b g == empty /\
elements s == union g (diff b (set_of ccs)) /\
subset (set_of ccs) b

predicate wf_num (e: env) =
let {stack = s; blacks = b; grays = g; sccs = ccs; sn = n; num = f} = e in
(forall x. -1 <= f[x] < n <= max_int() \/ f[x] = max_int())  /\
n = cardinal (union g b) /\
(forall x. f[x] = max_int() <-> mem x (set_of ccs)) /\
(forall x. f[x] = -1 <-> not mem x (union g b)) /\
(forall x y. lmem x s -> lmem y s -> f[x] < f[y] <-> rank x s < rank y s)

predicate no_black_to_white (blacks grays: set vertex) =
forall x x'. edge x x' -> mem x blacks -> mem x' (union blacks grays)

predicate wf_env (e: env) = let {stack = s; blacks = b; grays = g} = e in
wf_color e /\ wf_num e /\
no_black_to_white b g /\ simplelist s /\
(forall x y. mem x g -> lmem y s -> rank x s <= rank y s -> reachable x y) /\
(forall y. lmem y s -> exists x. mem x g /\ rank x s <= rank y s /\ reachable y x)

predicate access_from (x: vertex) (s: set vertex) =
forall y. mem y s -> reachable x y

predicate access_to (s: set vertex) (y: vertex) =
forall x. mem x s -> reachable x y

predicate num_of_reachable (n: int) (x: vertex) (e: env) =
exists y. lmem y e.stack /\ n = e.num[y] /\ reachable x y

predicate xedge_to (s1 s3: list vertex) (y: vertex) =
(exists s2. s1 = s2 ++ s3 /\ exists x. lmem x s2 /\ edge x y) /\ lmem y s3

predicate subenv (e e': env) =
(exists s. e'.stack = s ++ e.stack /\ subset (elements s) e'.blacks) /\
subset e.blacks e'.blacks /\ subset e.sccs e'.sccs /\
(forall x. lmem x e.stack -> e.num[x] = e'.num[x]) /\
e.grays == e'.grays

```

#### 4 specialized lemmas

```
lemma subscc_after_last_gray:
forall x e g s2 s3. e.grays == add x g ->  wf_env e ->
let {blacks = b; stack = s} = e in
s = s2 ++ s3 -> is_last x s2 ->
subset (elements s2) (add x b) -> is_subscc (elements s2)
by (access_to (add x g) x
/\ access_from x (elements s2)

lemma wf_color_postcond_split:
forall s2 s3 g b sccs: set vertex. union s2 s3 == union g (diff b sccs) -> inter s2 s3 == empty
-> inter g s2 == empty -> s3 == union g (diff b (union s2 sccs))

lemma wf_color_sccs:
forall e. wf_color e -> (set_of e.sccs) == diff (union e.blacks e.grays) (elements e.stack)

lemma wf_color_3_cases:
forall x e. wf_color e -> mem x (set_of e.sccs) \/ mem x (elements e.stack) \/ not (mem x (union e.blacks e.grays))

```

#### auxiliary functions

```let rec split (x : 'a) (s: list 'a) : (list 'a, list 'a) =
variant {length s}
returns {(s1, s2) -> s1 ++ s2 = s}
returns {(s1, _) -> lmem x s -> is_last x s1}

match s with
| Nil -> (Nil, Nil)
| Cons y s' -> if x = y then (Cons x Nil, s') else
let (s1', s2) = split x s' in
((Cons y s1'), s2)
end

returns {r -> r.blacks = e.blacks /\ r.grays = add x e.grays
/\ r.sccs = e.sccs /\ r.stack = Cons x e.stack
/\ r.sn = e.sn + 1 /\ r.num = e.num[x <-e.sn]}
let n = e.sn in
{blacks = e.blacks; grays = add x e.grays;
stack = Cons x e.stack; sccs = e.sccs; sn = n+1; num = e.num[x <-n]}

returns {r -> r.blacks = add x e.blacks /\ r.grays = remove x e.grays
/\ r.stack = e.stack /\ r.sccs = e.sccs
/\ r.sn = e.sn /\ r.num = e.num}
{blacks = add x e.blacks; grays = remove x e.grays;
stack = e.stack; sccs = e.sccs; sn = e.sn; num = e.num}

let rec set_max_int (s : list vertex)(f : map vertex int) =
variant {length s}
returns {f' -> forall x. lmem x s -> f'[x] = max_int()}
returns {f' -> forall x. not lmem x s -> f'[x] = f[x] }
match s with
| Nil -> f
| Cons x s' -> (set_max_int s' f)[x <- max_int()]
end

```

#### dfs1

```let rec dfs1 x e  =
variant{cardinal (diff vertices (union e.blacks e.grays)), 0}
requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)
(* invariants *)
requires {wf_env e} (* I1a *)
requires {forall cc. mem cc e.sccs <-> subset cc e.blacks /\ is_scc cc} (* I2a *)
returns {(_, e') -> wf_env e'} (* I1b *)
returns {(_, e') -> forall cc. mem cc e'.sccs <-> subset cc e'.blacks /\ is_scc cc} (* I2b *)
(* post-cond *)
returns {(n, e') -> n <= e'.num[x]} (* PC1 *)
returns {(n, e') -> n = max_int() \/ num_of_reachable n x e'} (* PC2 *)
returns {(n, e') -> forall y. xedge_to e'.stack e.stack y -> n <= e'.num[y]} (* PC3 *)
returns {(_, e') -> mem x e'.blacks} (* PC4 *)
(* monotony *)
returns {(_, e') -> subenv e e'}

let n = e.sn in
let (n1, e1) =
dfs (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in
assert {is_last x s2 /\ s3 = e.stack /\ subset (elements s2) (add x e1.blacks)};
assert {is_subscc (elements s2)};
if n1 < n then begin
assert {exists y. mem y e.grays /\ lmem y e1.stack /\ e1.num[y] < e1.num[x] /\ reachable x y};
else  begin
assert {forall y. in_same_scc y x -> lmem y s2};
assert {is_scc (elements s2)};
assert {inter e.grays (elements s2) = empty by inter e.grays (elements s2) == empty};
(max_int(), {blacks = add x e1.blacks; grays = e.grays;
stack = s3; sccs = add (elements s2) e1.sccs;
sn = e1.sn; num = set_max_int s2 e1.num}) end

```

#### dfs

```
with dfs roots e =
variant {cardinal (diff vertices (union e.blacks e.grays)), 1, cardinal roots}
requires {subset roots vertices} (* R1 *)
requires {forall x. mem x roots -> access_to e.grays x} (* R2 *)
(* invariants *)
requires {wf_env e} (* I1a *)
requires {forall cc. mem cc e.sccs <-> subset cc e.blacks /\ is_scc cc}  (* I2a *)
returns {(_, e') -> wf_env e'} (* I1b *)
returns {(_, e') -> forall cc. mem cc e'.sccs <-> subset cc e'.blacks /\ is_scc cc} (* I2b *)
(* post-cond *)
returns {(n, e') -> forall x. mem x roots -> n <= e'.num[x]} (* PC1 *)
returns {(n, e') -> n = max_int() \/ exists x. mem x roots /\ num_of_reachable n x e'} (* PC2 *)
returns {(n, e') -> forall y. xedge_to e'.stack e.stack y -> n <= e'.num[y]} (* PC3 *)
returns {(_, e') -> subset roots (union e'.blacks e'.grays)} (* PC4 *)
(* monotony *)
returns {(_, e') -> subenv e e'}

if is_empty roots then (max_int(), e)
else
let x = choose roots in
let roots' = remove x roots in
let (n1, e1) =
assert {e.num[x] <> -1 <-> (lmem x e.stack \/ mem x e.blacks)};
if e.num[x] <> -1 then (e.num[x], e) else dfs1 x e
in
let (n2, e2) = dfs roots' e1 in (min n1 n2, e2)

```

#### tarjan

```
let tarjan () =
returns {r -> forall cc. mem cc r <-> subset cc vertices /\ is_scc cc}
let e0 = {blacks = empty; grays = empty; stack = Nil; sccs = empty; sn = 0; num = const (-1)} in
let (_, e') = dfs vertices e0 in
assert {subset vertices e'.blacks};
e'.sccs
end

```

#### [sessioncoq1coq2zip]

Generated by why3doc 0.88.3