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What are logical relations?

So far, most proofs involving terms have proceeded by induction on the
structure of terms (or, equivalently, on typing derivations).

Logical relations are relations between well-typed terms defined
inductively on the structure of types. They allow proofs between terms
by induction on the structure of types.

Unary relations

● Unary relations are predicates on expressions (or sets of expressions)

● They can be used to prove type safety and strong normalization

Binary relations

● Binary relations relate pairs of expressions of related types

● They can be used to prove equivalence of programs and
non-interference properties.

Logical relations are a common proof method for programming languages.

5 76 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type ∀α.α → int ?

▷ the function cannot examine its argument

▷ it always returns the same integer

▷ λx.n,
λx. (λy. y) n,
λx. (λy.n) x.
etc.

▷ they are all βη-equivalent to the term λx.n

6⟨11⟩ 76 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

▷ behaves as λx.x

A term type ∀αβ.α → β → α ?

▷ behaves as λx.λy.x

A term type ∀α.α → α → α ?

▷ behaves either as λx.λy.x or λx.λy. y

6⟨10⟩ 76 ◁
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

▷ The length of the result depends only on the length of the argument

▷ All elements of the results are elements of the argument

▷ The choice (i, j) of pairs such that i-th element of the result is the
j-th element of the argument does not depend on the element itself.

▷ the function is preserved by a transformation of its argument that
preserves the shape of the argument

∀f,x, whoami (map f x) =map f (whoami x)

7⟨7⟩ 76 ◁
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort cmp (map f ℓ) = map f (sort cmp ℓ)

7⟨9⟩ 76 ◁
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Application:

▷ If sort is correct on lists of integers, then it is correct on any list

▷ May be useful to reduce testing.

7⟨11⟩ 76 ◁
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Note that there are many other inhabitants of this type, but they all
satisfy this free theorem. (e.g., a function that sorts in reverse order, or a
function that removes (or adds) duplicates).

7⟨10⟩ 76 ◁
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Parametricity

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. Wadler’s paper contains the ‘free theorem’ about
the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].

Bernardy et al. [2010] generalize the idea of testing polymorphic
functions to arbitrary polymorphic types and show how testing any
function can be restricted to testing it on (possibly infinitely many)
particular values at some particular types.

8 76 ◁
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed λ-calculus is also lifted at the level of types in richer
type systems such as Fω; then, the decidability of type-equality depends
on the termination of the reduction at the type level.

The proof of termination for the simply-typed λ-calculus is a simple and
illustrative use of logical relations.

Notice however, that our simply-typed λ-calculus is equipped with a
call-by-value semantics. Proofs of termination are usually done with a
strong evaluation strategy where reduction can occur in any context.

10 76 ◁
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Normalization

Proving termination of reduction in fragments of the λ-calculus is often a
difficult task because reduction may create new redexes or duplicate
existing ones.

Hence the size of terms may grow (much) larger during reduction. The
difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by
Hindley and Seldin [1986]. The proof method is due to [Tait, 1967].

11 76 ◁
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Tait’s method

Idea

● build the set Tτ of terminating terms of type τ ;

● show that any term of type τ is in Tτ , by induction on terms.

This hypothesis is however too weak. The difficulty is as usual to find a
strong enough induction hypothesis...

Terms of type τ1 → τ2 should not only terminate but also terminate when
applied to terms in Tτ1 .

The construction of Tτ is thus by induction of τ .

11 76 ◁
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Normalization

Definition
Let Tτ be defined inductively on τ as follows:

● Tα is the set of closed terms that terminates;

● Tτ2→τ1 is the set of closed terms M1 of type τ2 → τ1 that terminates
and such that M1 M2 is in Tτ1 for any term M2 in Tτ2 .

The set Tτ can be seen as a predicate, i.e. a unary relation. It is called a
logical relation because it is defined inductively on the structure of types.

The following proofs is then schematic of the use of logical relations.

11 76 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization

Reduction of terms of type τ preserves membership in Tτ (this is stronger
that stability of Tτ by reduction):

Lemma
If ∅ ⊢M ∶ τ and M Ð→M ′, then M ∈ Tτ iff M ′ ∈ Tτ .

Proof.
The proof is by induction on τ .

Lemma
For any type τ , the reduction of any term in Tτ terminates.

Tautology, by definition of Tτ .

11 76 ◁
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Normalization

Therefore, it just remains to show that any term of type τ is in Tτ , i.e.:

Lemma
If ∅ ⊢M ∶ τ , then M ∈ Tτ .

The proof is by induction on (the typing derivation of) M .

However, the case for abstraction requires some similar statement, but
for open terms. We need to strengthen the Lemma.

A trick to avoid considering open terms is to require the statement to
hold for all closed instances of an open term:

Lemma (strenghened)

If (xi ∶ τi)
i∈I ⊢M ∶ τ , then for any closed values (Vi)

i∈I in (Tτi)
i∈I ,

the term [(xi ↦ Vi)i∈I]M is in Tτ .

11 76 ◁
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Normalization

Proof. By structural induction on M .
We write Γ for (xi ∶ τi)i∈I and θ for [(xi ↦ Vi)i∈I]. Assume Γ ⊢M ∶ τ .

The only interesting case is whenM is λx ∶τ1.M2:

By inversion of typing, we know that Γ, x ∶ τ1 ⊢ M2 ∶ τ2 and τ1 → τ2 is τ .

To show θM ∈ Tτ , we must show that it is terminating, which holds as it
is a value, and that its application to any M1 in Tτ1 is in Tτ2 (1).

Let M1 ∈ Tτ1 . By definition M1 Ð→
∗ V (2). We then have:

(θM)M1

△== (θ(λx ∶τ1.M2))M1 by definition of M
= (λx ∶τ1. θM2)M1 choose x # x⃗

Ð→∗(λx ∶τ1. θM2) V by (2)
Ð→ [x ↦ V ](θM2) by (β)
= ([x ↦ V ]θ)(M2) ∈ Tτ2 by induction hypothesis

This establishes (1) since membership in Tτ2 is preserved by reduction.
11 76 ◁
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Calculus

Take the call-by-value λst with primitive booleans and conditional.

Write B the type of booleans and tt and ff for true and false.

We define VJτK and EJτK the subsets of closed values and closed
expressions of (ground) type τ by induction on types as follows:

VJBK
△== {tt,ff}

VJτ1 → τ2K
△== {λx ∶τ1.M ∣ ∀V ∈ VJτ1K, (λx ∶τ1.M) V ∈ EJτ2K}

EJτK
△== {M ∣ ∃V ∈ VJτK,M ⇓ V }

We write M ⇓ N for M Ð→∗ N .
The goal is to show that any closed expression of type τ is in EJτK.

Remarks
Although usual with logical relations, well-typedness is actually not
required here and omitted: otherwise, we would have to carry unnecessary
type-preservation proof obligations. VJτK ⊆ EJτK—by definition.
EJτK is closed by inverse reduction—by definition, i.e.
If M ⇓ N and N ∈ EJτK then M ∈ EJτK. 12 76 ◁
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Problem

We wish to show that every closed term of type τ is in EJτK

● Proof by induction on the typing derivation.

● Problem with abstraction: the premise is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open
terms.

● The semantics of open terms can be given by abstracting over the
semantics of their free variables.

13 76 ◁
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Generalize the definition to open terms

We define a semantic judgment for open terms Γ ⊧M ∶ τ so that
Γ ⊢M ∶ τ implies Γ ⊧M ∶ τ and ∅ ⊧M ∶ τ means M ∈ EJτK.

We interpret free term variables of type τ as closed values in VJτK.

We interpret environments Γ as closing substitutions γ, i.e. mappings
from term variables to closed values:

We write γ ∈ GJΓK to mean dom(γ) = dom(Γ) and γ(x) ∈ VJτK for all
x ∶ τ ∈ Γ.

Γ ⊧M ∶ τ
def
⇐⇒ ∀γ ∈ GJΓK, γ(M) ∈ EJτK

14 76 ◁
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Fundamental Lemma

Theorem (fundamental lemma)
If Γ ⊢M ∶ τ then Γ ⊧M ∶ τ .

Corollary (termination of well-typed terms):
If ∅ ⊢M ∶ τ then M ∈ EJτK.

That is, closed well-typed terms of type τ evaluate to values of type τ .

15 76 ◁
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Proof by induction on the typing derivation

Routine cases

Case Γ ⊢ tt ∶ B or Γ ⊢ ff ∶ B: by definition, tt,ff ∈ VJBK and VJBK ⊆ EJBK.

Case Γ ⊢ x ∶ τ : γ ∈ GJΓK, thus γ(x) ∈ VJτK ⊆ EJτK

Case Γ ⊢M1 M2 ∶ τ :

By inversion, Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2.

Let γ ∈ GJΓK. We have γ(M1 M2) = (γM1) (γM2).
By IH, we have Γ ⊧M1 ∶ τ2 → τ and Γ ⊧M2 ∶ τ2.
Thus γM1 ∈ EJτ2 → τK (1) and γM2 ∈ EJτ2K (2).

By (2), there exists V ∈ VJτ2K such that γM2 ⇓ V .
Thus (γM1) (γM2) ⇓ (γM1) V ∈ EJτK by (1).

Then, (γM1) (γM2) ∈ EJτK, by closure by inverse reduction.

Case Γ ⊢ ifM then M1 elseM2 ∶ τ : By cases on the evaluation of γM .

16 76 ◁
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Proof by induction on the typing derivation (key case)

The interesting case

Case Γ ⊢ λx ∶τ1.M ∶ τ1 → τ :

Assume γ ∈ GJΓK.
We must show that γ(λx ∶τ1.M) ∈ EJτ1 → τK (1)

That is, λx ∶τ1. γM ∈ VJτ1 → τK (we may assume x ∉ dom(γ) w.l.o.g.)
Let V ∈ VJτ1K, it suffices to show (λx ∶τ1. γM) V ∈ EJτK (2).

We have (λx ∶τ1. γM) V Ð→ (γM)[x ↦ V ] = γ′M
where γ′ is γ[x ↦ V ] ∈ GJΓ, x ∶ τ1K (3)

Since Γ, x ∶ τ1 ⊢M ∶ τ , we have Γ, x ∶ τ1 ⊧M ∶ τ by IH on M . Therefore
by (3), we have γ′M ∈ EJτK. Since EJτK is closed by inverse reduction,
this proves (2) which finishes the proof of (1).

17 76 ◁
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Variations

We have shown both termination and type soundness, simultaneously.

Termination would not hold if we had a fix point.
But type soundness would still hold.

The proof may be modified by choosing:

EJτK = {M ∶ τ ∣ ∀N,M ⇓ N Ô⇒ (N ∈ VJτK ∨ ∃N ′,N Ð→ N ′)}
Compare with

EJτK = {M ∶ τ ∣ ∃V ∈ VJτK,M ⇓ V }

Exercise
Show type soundness with this semantics.

18 76 ◁
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(Bibliography)

Mostly following Bob Harper’s course notes Practical foundations for
programming languages [Harper, 2012].

See also

● Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]

● Parametric Polymorphism and Operational Equivalence [Pitts, 2000].

● Theorems for free! [Wadler, 1989].

● Course notes taken by Lau Skorstengaard on Amal Ahmed’s OPLSS
lectures.

We assume a call-by-value operational semantics instead of call-by-name
in [Harper, 2012].

20 76 ◁
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When are two programs equivalent

M ⇓ N ?

M ⇓ V and N ⇓ V ?

But what if M and N are functions?

Aren’t λx. (x + x) and λx.2 ∗ x equivalent?

Idea two functions are observationally equivalent if when applied to
equivalent arguments, they lead to observationally equivalent results.

Are we general enough?

21 76 ◁
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Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M ∶ B and N ∶ B, then M ≃ N iff there exists V such that M ⇓ V and
N ⇓ V . (Call M ≃ N behavioral equivalence.)

To compare programs at other types, we place them in arbitrary closing
contexts.

Definition (observational equivalence)

Γ ⊢M ≅ N ∶ τ △== ∀C ∶ (Γ▷ τ)↝ (∅▷B), C[M] ≃ C[N]
Typing of contexts
C ∶ (Γ▷ τ)↝ (∆▷ σ) ⇐⇒ (∀M, Γ ⊢M ∶ τ Ô⇒ ∆ ⊢ C[M] ∶ σ)

There is an equivalent definition given by a set of typing rules. This is
needed to prove some properties by induction on the typing derivations.

We write M ≅τ N for ∅ ⊢M ≅ N ∶ τ
22 76 ◁
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Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:

≡ is consistent if ∅ ⊢M ≡ N ∶ B implies M ≃ N .

≡ is a congruence if it is an equivalence and is closed by context, i.e.

Γ ⊢M ≡ N ∶ τ ∧ C ∶ (Γ▷τ)↝ (∆▷σ) Ô⇒ ∆ ⊢ C[M] ≡ C[N] ∶ σ
Consistent: by definition, using the empty context.

Congruence: by compositionality of contexts.

Coarsiest: Assume ≡ is a consistent congruence.

We assume Γ ⊢M ≡ N ∶ τ (1) and show Γ ⊢M ≅ N ∶ τ .

Let C ∶ (Γ▷ τ)↝ (∅▷B) (2). We must show that C[M] ≃ C[N].
This follows by consistency applied to Γ ⊢ C[M] ≡ C[N] ∶ B
which itself follows by congruence from (1) and (2).

23 76 ◁
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Problem with Observational Equivalence

Problems

● Observational equivalence is too difficult to test.

● Because of quantification over all contexts (too many for testing).

● But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

● Defining/testing the equivalence on base types.

● Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.

24 76 ◁
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Logical equivalence for closed terms

Unary logical relations interpret types by predicates on (i.e. sets of)
closed values of that type.

Binary relations interpret types by binary relations on closed values of
that type, i.e. sets of pairs of related values of that type.

That is VJτK ⊆ Val(τ) ×Val(τ).
Then, EJτK is the closure of VJτK by inverse reduction

We have VJτK ⊆ EJτK ⊆ Exp(τ) × Exp(τ).

26 76 ◁
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Logical equivalence for closed terms

We recursively define two relations VJτK and EJτK between values of
type τ and expressions of type τ by

VJBK
△== {(tt, tt), (ff,ff)}

VJτ → σK
△== {(V1, V2) ∣ V1, V2 ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, (V1 W1, V2 W2) ∈ EJσK }
EJτK

△== {(M1,M2) ∣M1,M2 ∶ τ ∧

∃(V1, V2) ∈ VJτK , M1 ⇓ V1 ∧M2 ⇓ V2}
where ⇓ (M1,M2) means

{(V1, V2) ∣Mi ⇓ Vi}

In the following we will leave the typing constraint in gray implicit (as a
global condition for sets VJ⋅K and EJ⋅K).

We also write

M1 ∼τ M2 for (M1,M2) ∈ EJτK and
V1 ≈τ V2 for (V1, V2) ∈ VJτK.

27 76 ◁
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Logical equivalence for closed terms (variant)

In a language with non-termination

We change the definition of EJτK to

EJτK
△== {(M1,M2) ∣M1,M2 ∶ τ ∧

(∀V1, M1 ⇓ V1 Ô⇒ ∃V2, M2 ⇓ V2 ∧ (V1, V2) ∈ VJτK)
∧ (∀V2, M2 ⇓ V2 Ô⇒ ∃V1, M1 ⇓ V1 ∧ (V1, V2) ∈ VJτK)}

Notice

VJτ → σK
△== {(V1, V2) ∣ V1, V2 ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, (V1 W1, V2 W2) ∈ EJσK}

= {((λx ∶τ.M1), (λx ∶τ.M2)) ∣ (λx ∶τ.M1), (λx ∶τ.M2) ⊢ τ → σ ∧
∀(W1,W2) ∈ VJτK, ((λx ∶τ.M1)W1, (λx ∶τ.M2)W2) ∈ EJσK}

28 76 ◁
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Properties of logical equivalence for closed terms

Closure by reduction

By definition, since reduction is deterministic: Assume M1 ⇓ N1 and
M2 ⇓ N2 and (M1,M2) ∈ EJτK, i.e. there exists (V1, V2) ∈ VJτK (1) such
that Mi ⇓ Vi. Since reduction is deterministic, we must have
Mi ⇓ Ni ⇓ Vi. This, together with (1), implies (N1,M2) ∈ EJτK.

Closure by inverse reduction

Immediate, by construction of EJτK.

Corollaries

● If (M1,M2) ∈ EJτ → σK and (N1,N2) ∈ EJτK, then(M1 N1,M2 N2) ∈ EJσK.

● To prove (M1,M2) ∈ EJτ → σK, it suffices to show(M1 V1,M2 V2) ∈ EJσK for all (V1, V2) ∈ VJτK.

29 76 ◁
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Properties of logical equivalence for closed terms

Consistency (∼B) ⊆ (≃)
Immediate, by definition of EJBK and VJBK ⊆ (≃).
Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note: Reflexivity is not at all obvious.

Proof

We show it simultaneously for ∼τ and ≈τ by induction on type τ .

30 76 ◁
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Logical equivalence for closed terms

We inductively define M1 ∼τ M2 (read M1 and M2 are logically
equivalent at type τ) on closed terms of (ground) type τ by induction
on τ :

● M1 ∼B M2 iff ∅ ⊢M1,M2 ∶ B and M1 ≃ M2

● M1 ∼τ→σ M2 iff ∅ ⊢M1,M2 ∶ τ → σ and
∀N1,N2, N1 ∼τ N2 Ô⇒ M1 N1 ∼σ M2 N2

Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note

Reflexivity is not at all obvious.

30 76 ◁
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Properties of logical equivalence for closed terms (proof)

For ∼τ , the proof is immediate by transitivity and symmetry of ≈τ .

For ≈τ , it goes as follows.

Case τ is B for values: the result is immediate.

Case τ is τ → σ:

By IH, symmetry and transitivity hold at types τ and σ.

For symmetry, assume V1 ≈τ→σ V2 (H), we must show V2 ≈τ→σ V1.

Assume W1 ≈τ W2. We must show V2 W1 ∼σ V1 W2 (C). We have W2 ≈τ W1

by symmetry at type τ . By (H), we have V2 W2 ∼σ V1 W1 and (C) follows by
symmetry of ∼ at type σ.

For transitivity, assume V1 ≈τ→σ V2 (H1) and V2 ≈τ→σ V3 (H2). To show
V1 ≈τ→σ V3, we assume W1 ≈τ W3 and show V1 W1 ∼σ V3 W3 (C).
By (H1), we have V1 W1 ∼σ V2 W3 (C1).
By symmetry and transitivity of ≈τ (IH), we get W3 ≈τ W3. It’s not reflexivity!
By (H2), we have V2 W3 ∼σ V3 W3 (C2).
(C) follows by transitivity of ∼σ applied to (C1) and (C2).

31 76 ◁
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Logical equivalence for open terms

When Γ ⊢M1 ∶ τ and Γ ⊢M2 ∶ τ , we wish to define a judgment
Γ ⊢M1 ∼ M2 ∶ τ to mean that the open terms M1 and M2 are equivalent
at type τ .

The solution is to interpret program variables of dom(Γ) by pairs of
related values and typing contexts Γ by a set of (closing) bisubstitutions
γ mapping variable type assignments to pairs of related values.

GJ∅K
△== {∅}

GJΓ, x ∶ τK
△== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓK ∧ (V1, V2) ∈ VJτK}

Given a bisubstitution γ, we write γi for the substitution that maps x to
Vi whenever γ maps x to (V1, V2).
Definition

Γ ⊢M1 ∼ M2 ∶ τ ⇐⇒ ∀γ ∈ GJΓK, (γ1M1, γ2M2) ∈ EJτK

We also write ⊢M1 ∼M2 ∶ τ or M1 ∼τ M2 for ∅ ⊢M1 ∼M2 ∶ τ .
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Properties of logical equivalence for open terms

Immediate properties

Open logical equivalence is symmetric and transitive.

(Proof is immediate by the definition and the symmetry and transitivity
of closed logical equivalence.)
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Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))

If Γ ⊢M ∶ τ , then Γ ⊢M ∼M ∶ τ .

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-True

Γ ⊢ tt ∼ tt ∶ bool C-False

Γ ⊢ ff ∼ ff ∶ bool
C-Var

x ∶ τ ∈ Γ
Γ ⊢ x ∼ x ∶ τ

C-Abs

Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ
Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ

C-App

Γ ⊢M1 ∼ M2 ∶ τ → σ Γ ⊢ N1 ∼ N2 ∶ τ
Γ ⊢M1 N1 ∼ M2 N2 ∶ σ

C-If

Γ ⊢M1 ∼ M2 ∶ B Γ ⊢ N1 ∼ N2 ∶ τ Γ ⊢ N ′
1
∼ N ′

2
∶ τ

Γ ⊢ ifM1 then N1 else N
′
1
∼ ifM2 then N2 else N

′
2
∶ τ
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Proof of compatibility lemmas

Each case can be shown independently.

Rule C-Abs: Assume Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ (1)
We show Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ. Let γ ∈ GJΓK.
We show (γ1(λx ∶τ.M1), γ2(λx ∶τ.M2)) ∈ VJτ → σK. Let (V1, V2) be in VJτK.
We show (γ1(λx ∶τ.M1) V1, γ2(λx ∶τ.M2) V2) ∈ EJσK (2).

Since γi(λx ∶τ.Mi) Vi ⇓ (γi, x↦ Vi)Mi
△
== γ′iMi, by inverse reduction, it suffices

to show (γ′
1
M1, γ

′
2
M2) ∈ EJσK. This follows from (1) since γ′ ∈ GJΓ, x ∶ τK.

Rule C-App (and C-If): By induction hypothesis and the fact that substitution
distributes over applications (and conditional).

We must show Γ ⊢M1 N1 ∼ M2 M2 ∶ σ (1). Let γ ∈ GJΓK. From the premises

Γ ⊢M1 ∼ M2 ∶ τ → σ and Γ ⊢N1 ∼ N2 ∶ τ , we have (γ1M1, γ2M2) ∈ EJτ → σK and

(γ1N1, γ2N2) ∈ EJτK. Therefore (γ1M1 γ1N1, γ2M2 γ2N2) ∈ EJσK. That is

(γ1(M1 N1), γ2(M2 N2)) ∈ EJσK, which proves (1).

Rule C-True, C-False, and C-Var: are immediate
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Proof of compatibility lemmas (cont.)

Rule C-If: We show Γ ⊢ ifM1 then N1 else N
′
1
∼ ifM2 then N2 else N

′
2
∶ τ .

Assume γ ∈ GJγK.
We show (γ1(ifM1 then N1 else N

′
1
), γ2(ifM2 then N2 else N

′
2
)) ∈ EJτK, That

is (if γ1M1 then γ1N1 else γ1N
′
1
, if γ2M2 then γ2N2 else γ2N

′
2
) ∈ EJτK (1).

From the premise Γ ⊢M1 ∼ M2 ∶ B, we have (γ1M1, γ2M2) ∈ EJBK. Therefore
M1 ⇓ V and M2 ⇓ V where V is either tt or ff:

● Case V is tt:. Then, (if γiMi then γiNi else γiN
′
i) ⇓ γiNi, i.e.

γi(ifMi then Ni else N
′
i) ⇓ γiNi. From the premise Γ ⊢ N1 ∼ N2 ∶ τ , we

have (γ1N1, γ2N2) ∈ EJτK and (1) follows by closer by inverse reduction.

● Case V is ff: similar.
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Proof of reflexivity

By induction on the derivation of Γ ⊢M ∶ τ .
We must show Γ ⊢M ∼M ∶ τ :

All cases immediately follow from compatibility lemmas.

Case M is tt or ff: Immediate by Rule C-True or Rule C-False

Case M is x: Immediate by Rule C-Var.

Case M is M ′ N : By inversion of the typing rule App, induction
hypothesis, and Rule C-App.

Case M is λτ ∶N. : By inversion of the typing rule Abs, induction
hypothesis, and Rule C-Abs.
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Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation

Logical equivalence is a congruence
If Γ ⊢M ∼M ′

∶ τ and C ∶ (Γ▷ τ)↝ (∆▷ σ), then
∆ ⊢ C[M] ∼ C[M ′] ∶ σ.
Proof By induction on the proof of C ∶ (Γ▷ τ)↝ (∆▷ σ).
Similar to the proof of reflexivity—but we need a syntactic definition of
context-typing derivations (which we have omitted) to be able to reason
by induction on the context-typing derivation.

Soundness of logical equivalence
Logical equivalence implies observational equivalence.
If Γ ⊢M ∼M ′

∶ τ then Γ ⊢M ≅M ′
∶ τ .

Proof: Logical equivalence is a consistent congruence, hence included in
observational equivalence which is the coarsiest such relation.
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Properties of logical equivalence

Completeness of logical equivalence
Observational equivalence of closed terms implies logical equivalence.
That is (≅τ) ⊆ (∼τ).
Proof by induction on τ .

Case B: In the empty context, by consistency ≅B is a subrelation of ≃B
which coincides with ∼B.

Case τ → σ: By congruence of observational equivalence!

By hypothesis, we have M1 ≅τ→σ M2 (1). To show M1 ∼τ→σ M2, we
assume V1 ≈τ V2 (2) and show M1 V1 ∼σ M2 V2 (3).

By soundness applied to (2), we have V1 ≅τ V2 from (2). By congruence
with (1), we have M1 V1 ≅σ M2 V2, which implies (3) by IH at type σ.
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Logical equivalence: example of application

Fact: Assume not
△== λx ∶B. if x then ff else tt

and M
△== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y.

Show that M ≅B→τ→τ→τ M
′.

Proof

It suffices to show M V0 V1 V2 ∼τ M ′ V ′
0
V ′
1
V ′
2
whenever V0 ≈B V ′

0
(1)

and V1 ≈τ V ′1 (2) and V2 ≈τ V ′2 (3). By inverse reduction, it suffices to
show: if not V0 then V1 else V2 ∼τ if V ′0 then V ′2 else V ′1 (4).

It follows from (1) that we have only two cases:

Case V0 = V ′0 = tt: Then not V0 ⇓ ff and thus M ⇓ V2 while M ′ ⇓ V2.
Then (4) follows by inverse reduction and (3).

Case V0 = V ′0 = ff: is symmetric.
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Observational equivalence

We now extend the notion of logical equivalence to System F.

τ ∶∶= . . . ∣ α ∣ ∀α. τ M ∶∶= . . . ∣ Λα.M ∣M τ

We write typing contexts ∆;Γ where ∆ binds variables and Γ binds
program variables.

Typing of contexts becomes C ∶ (∆;Γ▷ τ)↝ (∆′; Γ′▷ τ ′).
Observational equivalence

We (re)defined ∆;Γ ⊢M ≅M ′
∶ τ as

∀C ∶ (∆;Γ▷ τ)↝ (∅;∅▷B), C[M] ≃ C[M ′]
As before, write M ≅τ N for ∅;∅ ⊢M ≅ N ∶ τ (in particular, τ is closed).
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Logical equivalence

For closed terms (no free program variables)

● We need to give the semantics of polymoprhic types ∀α. τ
● Problem: We cannot do it in terms of the semantics of instances
τ[α ↦ σ] since the semantics is defined by induction on types.
● Solution: we give the semantics of terms with open types—in some
suitable environment that interprets type variables by logical
relations (sets of pairs of related values) of closed types ρ1 and ρ2

Let R(ρ1, ρ2) be the set of relations on values of closed types ρ1 and ρ2,
that is P(Val(ρ1) × Val(ρ2)). We optionally restrict to admissible
relations, i.e. relations that are closed by observational equivalence:

R ∈ R
♯(τ1, τ2) Ô⇒
∀(V1, V2) ∈ R, ∀W1,W2, W1 ≅ V1 ∧ W2 ≅ V2 Ô⇒ (W1,W2) ∈ R

The restriction to admissible relations is required for completeness of logical
equivalence with respect to observational equivalence but not for soundness.
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Example of admissible relations

For example, both

R1

△== {(tt,0), (ff ,1)}
R2

△== {(tt,0)} ∪ {(ff, n) ∣ n ∈ Z⋆}
are admissible relations in R

♯(B, int).
But

R3

△== {(tt, λx ∶τ.0), (ff , λx ∶τ.1)}
although in R(B, τ → int), is not admissible.

Taking M0

△== λx ∶τ. (λz ∶ int. z) 0, we have M ≅τ→int λx ∶τ.0 but (tt,M)
is not in R3. Note A relation R in R(τ1, τ2) can always be turned into

an admissible relation R♯ in R
♯(τ1, τ2) by closing R by observational

equivalence.

Note It is a key that such relations can relate values at different types.
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Interpretation of type environments

Interpretation of type variables

We write η for mappings α↦ (ρ1, ρ2,R) where R ∈ R(ρ1, ρ2).
We write ηi (resp. ηR) for the type (resp. relational) substitution that
maps α to ρi (resp. R) whenever η maps α to (ρ1, ρ2,R).
We define

VJαKη
△
== ηR(α)

VJ∀α. τKη
△== {(V1, V2) ∣ V1 ∶ η1(∀α. τ) ∧ V2 ∶ η2(∀α. τ) ∧
∀ρ1, ρ2,∀R ∈ R(ρ1, ρ2), (V1 ρ1, V2 ρ2) ∈ EJτKη,α↦(ρ1,ρ2,R)}
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Logical equivalence for closed terms with open types

We redefine

VJBKη
△
== {(tt, tt), (ff ,ff)}

VJτ → σKη
△== {(V1, V2) ∣ V1 ⊢ η1(τ → σ) ∧ V2 ⊢ η2(τ → σ) ∧

∀(W1,W2) ∈ VJτKη, (V1 W1, V2 W2) ∈ EJσKη}
EJτKη

△== {(M1,M2) ∣M1 ∶ η1τ ∧M2 ∶ η2τ ∧

∃(V1, V2) ∈ VJτKη,M1 ⇓ V1 ∧M2 ⇓ V2}
GJ∅Kη

△== {∅}
GJΓ, x ∶ τKη

△== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓKη ∧ (V1, V2) ∈ VJτKη}
and define

DJ∅K
△== {∅}

DJ∆, αK
△== {η,α ↦ (ρ1, ρ2,R) ∣ η ∈ DJ∆K ∧R ∈ R(ρ1, ρ2)}
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Logical equivalence for open terms

Definition We define ∆;Γ ⊢M ∼M ′
∶ τ as

∧{ ∆;Γ ⊢M,M ′
∶ τ

∀η ∈ DJ∆K, ∀γ ∈ GJΓKη, (η1(γ1M1), η2(γ2M2)) ∈ EJτKη

(Notations are a bit heavy, but intuitions should remain simple.)

Notation

We also write M1 ∼τ M2 for ⊢M1 ∼M2 ∶ τ (i.e. ∅;∅ ⊢M1 ∼M2 ∶ τ).

In this case, τ is a closed type and M1 and M2 are closed terms of
type τ ; hence, this coincides with the previous definition (M1,M2) in
EJτK, which may still be used as a shorthand for EJτK∅.
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Properties

Respect for observational equivalence

If (M1,M2) ∈ EJτK♯η and N1 ≅η1(τ) M1 and N2 ≅η2(τ) M2 then

(N1,N2) ∈ EJτK♯η. Requires admissibility

(We use ♯ to indicate that admissibility is required in the definition of R♯)

Proof. By induction on τ .

Assume (M1,M2) ∈ EJτKη (1) and N1 ≅η1(τ)M1 (2). We show
(N1,M2) ∈ EJτKη .

Case τ is ∀α.σ: Assume R ∈ R
♯

(ρ1, ρ2). Let ηα be η,α ↦ (ρ1, ρ2,R).
We have (M1 ρ1,M2 ρ2) ∈ EJσKηα

, from (1).
By congruence from (2), we have N1ρ1 ≅δ(τ)M1 ρ1.
Hence, by induction hypothesis, (M1 ρ1,M2 ρ2) ∈ EJσKηα

, as expected.

Case τ is α: Relies on admissibility, indeed.

Other cases: the proof is similar to the case of the simply-typed λ-calculus.
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Properties

Lemma (Closure under observational equivalence)
If ∆;Γ ⊢M1 ∼♯M2 ∶ τ and ∆;Γ ⊢M1 ≅ N1 ∶ τ and ∆;Γ ⊢M2 ≅ N2 ∶ τ ,
then ∆;Γ ⊢ N1 ∼♯ N2 ∶ τ Requires admissibility

Lemma (Compositionality) Key lemma

Assume ∆ ⊢ σ and ∆, α ⊢ τ and η ∈ DJ∆K. Then,

VJτ[α ↦ σ]Kη = VJτKη,α↦(η1σ, η2σ,VJσKη)

Proof by induction on τ .
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Parametricity

Theorem (Reflexivity) (also called the fundamental lemma)

If ∆;Γ ⊢M ∶ τ then ∆;Γ ⊢M ∼M ∶ τ .

Notice: Admissibility is not required for the fundamental lemma

Proof by induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

We redefine the lemmas to work in a typing context of the form ∆,Γ
instead of Γ and add two new lemmas:

C-Tabs

∆, α; Γ ⊢M1 ∼M2 ∶ τ

∆;Γ ⊢ Λα.M1 ∼ Λα.M2 ∶ ∀α. τ

C-Tapp

∆;Γ ⊢M1 ∼M2 ∶ ∀α. τ ∆ ⊢ σ

∆;Γ ⊢M1 σ ∼M2 σ ∶ τ[α ↦ σ]
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Proof of compatibility

Case M is Λα.N : We must show that ∆;Γ ⊢ Λα.N ∼ Λα.N ∶ ∀α. τ .
Assume η ∶ δ↔∆ δ′ and γ ∼Γ γ′ [η ∶ δ↔ δ′].
We must show γ(δ(Λα.N)) ∼∀α. τ γ′(δ(Λα.N)) [η ∶ δ ↔ δ].
Assume σ and σ′ closed and R ∶ σ↔ σ′. We must show

(γ(δ(Λα.N))) σ ∼τ (γ′(δ′(Λα.N))) σ [η0 ∶ δ0 ↔ δ′0]
where η0 = η,α ↦ R and δ0 = δ,α ↦ σ and δ′

0
= δ,α ↦ σ′.

Since

(γ(δ(Λα.N))) σ = (Λα.γ(δ(N))) σ Ð→ γ(δ(N))[α ↦ σ] = γ(δ0(N))
It suffices to show

γ(δ0(N)) ∼τ γ′(δ′0(N)) [η0 ∶ δ0 ↔ δ′0]
which follows by IH from ∆, α; Γ ⊢ N ∶ τ (which we obtain from
∆,Γ ⊢ Λα.N ∶ τ by inversion).
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Proof of compatibility

Case M is N σ:

By inversion of typing ∆,Γ ⊢ N ∶ ∀α. τ0 (1) and τ is ∀α. τ0.
We must show that ∆;Γ ⊢ N σ ∼ N σ ∶ τ0[α ↦ σ].
Assume η ∶ δ↔∆ δ′ and γ ∼Γ γ′ [η ∶ δ↔ δ′]. We must show

γ(δ(N σ)) ∼τ0[α↦σ] γ
′(δ′(N σ)) [η ∶ δ↔ δ′]

i.e. (γ(δ(N))) σ ∼τ0[α↦σ] (γ′(δ′(N))) σ [η ∶ δ↔ δ′]
By compositionality, it suffices to show

(γ(δ(N))) σ ∼τ0 (γ′(δ′(N))) σ [η0 ∶ δ0 ↔ δ′0] (2)
where η0 = η,α ↦ R and δ0 = δ,α ↦ σ and δ′

0
= δ,α ↦ σ′ and

R ∶ δ(s)↔ δ′(s) is defined by R(N0,N
′
0) ⇐⇒ N0 ∼σ N ′0 [η ∶ δ↔ δ′].

This relation is admissible (3). Hence by IH from (1), we have

(γ(δ(N))) ∼∀α. τ0 (γ′(δ′(N))) [η ∶ δ↔ δ′]
which implies (2) by definition of ∼∀α. τ0 . 52 76 ◁
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Properties

Soundness of logical equivalence
Logical equivalence implies observational equivalence.
If ∆;Γ ⊢M1 ∼M2 ∶ τ then ∆;Γ ⊢M1 ≅M2 ∶ τ .

Completeness of logical equivalence
Observational equivalence implies logical equivalence with admissibility.
If ∆;Γ ⊢M1 ≅M2 ∶ τ then ∆;Γ ⊢M1 ∼♯M2 ∶ τ .

As a particular case, M1 ≅τ M2 iff M1 ∼♯τ M2.

Note: Admissibility is not required for soundness—only for completeness.

That is, proofs that some observational equivalence hold do not usually
require admissibility.
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Properties

Extensionality ((A fact, hence does not depend on admissibility)

M1 ≅τ→σ M2 iff ∀(V ∶ τ),M1 V ≅σ M2 V iff ∀(N ∶ τ),M1 N ≅σ M2 N

M1 ≅∀α. τ M2 iff for all closed type ρ, M1 ρ ≅τ[α↦ρ]M2 ρ.

Proof. Forward direction is immediate as ≅ is a congruence. Backward direction
uses logical relations and admissibility, but the exported statement does not.

Case Value abstraction: It suffices to show M1 ∼τ→σ M2. That is, assuming
N1 ∼τ N2 (1), we show M1 N1 ∼σ M2 N2 (2). By assumption, we have
M1 N1 ≅σ M2 N1 (3). By the fundamental lemma, we have M2 ∼τ→σ M2.
Hence, from (1), we must have M2 N1 ∼σ M2 N2, We conclude (2) by respect
for observational equivalence with (3)—which requires admissibility.

Case Type abstraction: It suffices to show M1 ∼∀α. τ M2. That is, given
R ∈ R(ρ1, ρ2), we show (M1 ρ1,M2 ρ2) ∈ EJτKα↦(ρ1,ρ2,R) (4).
By assumption, we have M1 ρ1 ≅τ[α↦ρ1] M2 ρ1 (5).
By the fundamental lemma, we have M2 ∼∀α. τ M2.
Hence, we have (M2 ρ1,M2 ρ2) ∈ EJτKα↦(ρ1,ρ2,R)

We conclude (4) by respect for observational equivalence with (5). 54 76 ◁
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Properties

Identity extension Requires admissibiily
Let θ be a substitution of type variables for ground types.
Let R be the restriction of ≅αθ to Val(αθ) × Val(αθ)) and
η ∶ α ↦ (αθ,αθ,R).
Then EJτKη is equal to ≅τθ.

(The proof uses respect for observational equivalence, which requires
admissibility)
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Applications Inhabitants of ∀α.α → α

Fact If M ∶ ∀α.α → α, then M ≅∀α.α→α id where id
△== Λα.λx ∶α.x.

Proof By extensionality, it suffices to show that for any ρ and V ∶ ρ we
have M ρ V ≅ρ id ρ V . In fact, by closure by inverse reduction, it suffices
to show M ρ V ≅ρ V (1).

By parametricity, we have M ∼∀α.α→α M (2).

Consider R in R(ρ, ρ) equal to {(V,V )} and η be [α ↦ (ρ, ρ,R)]. (3)
By construction, we have (V,V ) ∈ VJαKη.

Hence, from (2), we have (M ρ V,M ρ V ) ∈ EJαKη, which means that
the pair (M ρ V,M ρ V ) reduces to a pair of values in (the singleton) R.
This implies that M ρ V reduces to V , which in turn, implies (1).

(3) Admissibility is not needed
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(tt, V1), (ff, V2)} in R(B, ρ)
and η be α ↦ (B, ρ,R). We have (tt, V1) ∈ VJαKη since R(tt, V1) and, similarly,
(ff, V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M B tt ff,M ρ V1 V2) is in
VJαKη , which means that (M B tt ff,M ρ V1 V2) reduces to a pair of values in
R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨
⎪⎪⎩

∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

Since, M B tt ff is independent of ρ, V1, and V2, this actually shows (1).
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
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Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
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⎧⎪⎪⎨
⎪⎪⎩

∀ρ,V1, V2, M N 0 1 ≅N 0 ∧ M ρ V1 V2 ≅ρ V1
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Since, M N 0 1 is independent of ρ, V1, and V2, this actually shows (1).

57⟨10⟩ 76 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α → α
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⎧⎪⎪⎨
⎪⎪⎩
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Exercise Inhabitants of ∀α.α → α

Redo the proof that all inhabitants of of ∀α.α → α are observationally
equivalent to the identity, following the schema that we used for
booleans.
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△== Λα.λf ∶α → α.λx ∶α.fn x.
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△== Λα.λf ∶α → α.λx ∶α.fn x.

That is, the inhabitants of ∀α. (α → α)→ α → α are the Church naturals.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1
V2 (1), since Nn ρ V1 V2

reduces to V n
1

V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be
{(Sk Z, V k

1
V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)
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Indeed, assume (W1,W2) in VJαKη. There exists k such that W1 = S
k Z and

W2 = V k
1
V2. Thus, (SW1, V1 W2) equal to (Sk+1 Z, V k+1

1
V2) is in EJαKη .
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
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Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be
{(Sk Z, V k

1
V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

By parametricity, we have M ∼nat M . Hence, (M nat S Z,M ρ V1 V2) ∈ EJαKη .
Thus, there exists n such that M nat S Z ≅nat S

n Z and M ρ V1 V2 ≅ρ V n
1

V2.

Since, M nat S Z is independent of n, we may conclude (1), provided the Sn Z
are all in different observational equivalence classes (easy to check).
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Applications Inhabitants of ∀α.α → (τ → α → α) → α

▷⋅ Left as an exercise. . .
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Applications ∀α.α → (τ → α → α) → α ▷⋅

Fact Let τ be closed and list be ∀α.α → (τ → α → α) → α. Let C be
λH ∶τ. λT ∶ list .Λα.λn ∶α.λc ∶τ → α → α. c H (T α n c) and N be
Λα.λn ∶α.λc ∶τ → α → α.n. If M ∶ list, then M ≅list Nn for some Nn in
Ln where Lk is defined inductively by

L0
△== {N} and Lk+1 △== {C Wk Nk ∣Wk ∈ Val(τ) ∧Nk ∈ Lk}

Proof By extensionality, it suffices to show that there exists n and Nn ∈ Ln
such that for any closed type ρ and closed values V1 ∶ τ → ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ∼ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, C Wn (. . . (C W1 N) . . .) (1), since
Nn ρ V1 V2 reduces to C Wn (. . . (C W1 N) . . .) where all Wk are in Val(τ).

Let ρ and V1 ∶ α→ ρ → ρ and V2 ∶ ρ be fixed.

Let R in R(list, ρ) be defined inductively as ⋃Rn where Rk+1 is
{⇓ (C G T,V2 H U) ∣ (G,H) ∈ VJτKη ∧ (T,U) ∈ Rk} and R0 is {(N, V1)}.

We have (N, V1) ∈ R0 ⊆ VJαKη .

We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)

By parametricity, we have M ∼ M . Hence, (M list C N,M ρ V V ) ∈ EJαK .
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We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)
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Encodable features Natural numbers

We have shown that all expressions of type nat behave as natural
numbers. Hence, natural numbers are definable.

Still, we could also provide a type nat of natural numbers as primitive.

Then, we may extend

● behavioral equivalence: if M1 ∶ nat and M2 ∶ nat, we have
M1 ≃nat M2 iff there exists n ∶ nat such that M1 ⇓ n and M2 ⇓ n.

● logical equivalence: VJnatK
△== {(n,n) ∣ n ∈ N}

All properties are preserved.
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Encodable features Products

Given closed types τ1 and τ2, we defined

τ1 × τ2
△== ∀α. (τ1 → τ2 → α)→ α

(M1,M2) △== Λα.λx ∶τ1 → τ2 → α.x M1 M2

M.i
△== M (λx1 ∶τ1. λx2 ∶τ2. xi)

Facts

If M ∶ τ1 × τ2, then M ≅τ1×τ2 (M1,M2) for some M1 ∶ τ1 and M2 ∶ τ2.

If M ∶ τ1 × τ2 and M.1 ≅τ1 M1 and M.2 ≅τ2 M2, then M ≅τ1×τ2 (M1,M2)
Primitive pairs

We may instead extend the language with primitive pairs. Then,

VJτ × σKη
△== {((V1,W1), (V2,W2))∣ (V1, V2) ∈ VJτKη ∧ (W1,W2) ∈ VJσKη}
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Sums

We define:

VJτ + σKη = {(inj1 V1, inj1 V2) ∣ (V1, V2) ∈ VJτKη} ∪{(inj2 W1, inj2 W2) ∣ (W1,W2) ∈ VJσKη}
Notice that sums, as all datatypes, can also be encoded in System F.
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Primitive Lists

We recursively1 define VJlist τKη as ⋃kW
k
η where W 0

η is {(Nil,Nil)}
and W k+1

η is

{(Cons H1 T1,Cons H2 T2) ∣ (H1,H2) ∈ VJαKη ∧ (T1, T2) ∈ W k
η}.

Assume that (α ↦ ρ1, ρ2,R) ∈ η where R in R(ρ1, ρ2) is the graph ⟨g⟩ of
a function g, i.e. equal to {(V1, V2) ∣ g V1 ⇓ V2}. Then, we have:

VJlist αKη(W1,W2)
⇐⇒ ∃k,⋁

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

W1 = Nil ∧W2 = Nil
W1 = Cons H1 T1 ∧W2 = ConsH2 T2 ∧ gH1 ⇓ H2

∧ (T1, T2) ∈ W k
η

⇐⇒ map ρ1 ρ2 g W1 ⇓ W2

1This definition is well-founded.

66 76 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications sort ∶ ∀α. (α → α → bool) → list α

Fact: Assume sort ∶ ∀α. (α → α → bool)→ list α → list α (1). Then

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)
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Applications sort ∶ ∀α. (α → α → bool) → list α

Proof: Assume ∀x, y, cp (f x) (f y) ≅ cp x y) (H).

We have sort ∼σ sort where σ is ∀α. (α → α → bool)→ list α → list α.

Thus, for all ρ1, ρ2, and relations R in R(ρ1, ρ2),
∀(cp

1
, cp

2
) ∈ VJα → α → BKη,∀(V1, V2) ∈ VJlist αKη , (sort ρ1 cp1 V1, sort ρ2 cp2 V2) ∈ EJlist αKη)

(1)
(2)

where η is α ↦ (ρ1, ρ2,R). We may choose R to be ⟨f⟩ for some f .

We have (1). Indeed, for all (V1, V2) and (W1,W2) in ⟨f⟩, we have f V1 ⇓ V1

and f W1 ⇓ W1, hence cp
2
(f V1)(f W1) ⇓ cp1 V2W2. Thus

cp
2
(f V1)(f W1) ≅ cp1 V2W2. With (H), this implies cp

2
V1W1 ≅ cp1 V2W2,

i.e. cp
2
V1W1 ∼ cp1 V2W2 since we are at type B, as expected. Hence (2) holds.

Since
VJlist αKη

△== ⟨map ρ1 ρ2 f⟩ ⊆ VJρ1K × VJρ2K
(2) reads

∀V ∶ list ρ1, V2 ∶∶ list ρ2,
map ρ1 ρ2 f V ⇓ V2 Ô⇒ ∃W1,W2,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

map ρ1 ρ2 f W1

sort ρ1 cp1 V ⇓ W1 ≅
sort ρ2 cp2 V2

68 76 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications whoami ∶ ∀α. list α → list α

Left as an exercise. . .
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Existential types

We define:

VJ∃α. τKη
△== {(pack V1, ρ1 as ∃α. τ,pack V2, ρ2 as ∃α. τ) ∣

∃ρ1, ρ2,R ∈ R(ρ1, ρ2), (V1, V2) ∈ EJτKη,α↦(ρ1,ρ2,R)}

Compare with

VJ∀α. τKη = {(Λα.M1,Λα.M2) ∣
∀ρ1, ρ2,R ∈ R(ρ1, ρ2),
((Λα.M1) ρ1, (Λα.M2) ρ2) ∈ EJτKη,α↦(ρ1,ρ2,R)}
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Existential types Example

Consider V1

△== (not, tt), and V2

△== (succ,0) and σ
△== (α → α) × α.

Let R ∈ R(bool,nat) be {(tt,2n), (ff ,2n + 1) ∣ n ∈ N} and η be
α ↦ (bool,nat,R).
We have (V1, V2) ∈ VJσKη.

Hence, (pack V1,bool as ∃α. σ, pack V2,nat as ∃α. σ) ∈ VJ∃α. σK.

Proof of ((not, tt), (succ,0)) ∈ VJ(α → α) × αKη (1)

We have (tt,0) ∈ VJαKη, since (tt,0) ∈ R.
We also have (not, succ) ∈ VJα → αKη, which proves (1).

Indeed, assume (W1,W2) ∈ VJαKη. Then (W1,W2) is either of the form

● (tt,2n) and (not W1, succ W2) reduces to (ff,2n + 1), or
● (ff,2n + 1) and (not W1, succ W2) reduces to (tt,2n + 2).

In both cases, (not W1, succ W2) reduces to a pair in R.
Hence, (not W1, succW2) ∈ EJαKη.
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Representation independence

A client of an existential type ∃α. τ should not see the difference between
two implementations N1 and N2 of ∃α. τ with witness types ρ1 and ρ2.

A client M has type ∀α. τ → σ with α ∉ fv(σ); it must use the argument
parametrically, and the result is independent of the witness type.

Assume that ρ1 and ρ2 are two closed representation types and R is in
R(ρ1, ρ2). Let η be α ↦ (ρ1, ρ2,R).

Suppose that N1 ∶ τ[α ↦ ρ1] and N2 ∶ τ[α ↦ ρ2] are two equivalent
implementations of the operations, i.e. such that (N1,N2) ∈ EJτKη.

A client M satisfies (M,M) ∈ EJ∀α. τ → σKη. Thus
(M ρ1 N1,M ρ2 N2) is in EJσK (as α is not free in σ).

That is, M ρ1 N1 ≅σ M ρ2 N2: the behavior with the implementation N1

with representation type ρ1 is indistinguishable from the behavior with
the implementation N2 with representation type ρ2.
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How do we deal with recursive types?

Assume that we allow equi-recursive types.

τ ∶∶= . . . ∣ µα.τ

A naive definition would be

VJµα.τKη = VJ[α ↦ µα.τ]τKη

But this is ill-founded.

The solution is to use indexed-logical relations.

We use a sequence of decreasing relations indexed by integers (fuel),
which is consumed during unfolding of recursive types.
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Step-indexed logical relations (a taste)

We define a sequence VkJτKη indexed by natural numbers n ∈ N that
relates values of type τ up to n reduction steps. Omitting typing clauses:

VkJBKη = {(tt, tt), (ff ,ff)}
VkJτ → σKη = {(V1, V2) ∣ ∀j < k,∀(W1,W2) ∈ VjJτKη,

(V1 W1, V2 W2) ∈ EjJσKη}
VkJαKη = ηR(α).k

VkJ∀α. τKη = {(V1, V2) ∣ ∀ρ1, ρ2,R ∈ Rk(ρ1, ρ2),∀j < k,
(V1 ρ1, V2 ρ2) ∈ VjJτKη,α↦(ρ1,ρ2,R)}

VkJµα.τKη = Vk−1J[α↦ µα.τ]τKη

EkJτKη = {(M1,M2) ∣ ∀j < k,M1 ⇓j V1

Ô⇒ ∃V2,M2 ⇓ V2 ∧ (V1, V2) ∈ Vk−jJτKη}

By ⇓j means reduces in j-steps.
Rj(ρ1, ρ2) is composed of sequences of decreasing relations between
closed values of closed types ρ1 and ρ2 of length (at least) j.
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Step-indexed logical relations (a taste)

The relation is asymmetric.

If ∆;Γ ⊢M1,M2 ∶ τ we define ∆;Γ ⊢M1 ≾M2 ∶ τ as

∀η ∈ Rk
∆(δ1, δ2),∀(γ1, γ2) ∈ GkJΓK, (γ1(δ1(M1)), γ2(δ2(M2)) ∈ EkJτKη

and

∆;Γ ⊢M1 ∼ M2 ∶ τ
△== ⋀

⎧⎪⎪
⎨
⎪⎪⎩

∆;Γ ⊢M1 ≾M2 ∶ τ

∆;Γ ⊢M2 ≾M1 ∶ τ

Notations and proofs get a bit involved...

Notations may be simplified by introducing a later guard ▷ to capture
incrementation of the index and avoid the explicit manipulation of
integers (but the meaning remains the same).
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Logical relations for F ω ?

Logical relations can be generalized to work for Fω, indeed.

There is a slight complication though in the interpretation of type
functions.

This is out of this course scope, but one may, for instance, read
[Atkey, 2012].
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