MPRI 2.4, Functional programming and type systems Metatheory of System F

Didier Rémy

Plan of the course

Metatheory of System F
ADTs, Recursive types, Existential types, GATDs
Going higher order with F^{ω} !
Logical relations
Side effects, References, Value restriction
Type reconstruction
Overloading

Logical relations and parametricity

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

What are logical relations?

So far, most proofs involving terms have proceeded by induction on the structure of terms (or, equivalently, on typing derivations).
Logical relations are relations between well-typed terms defined inductively on the structure of types. They allow proofs between terms by induction on the structure of types.

Unary relations

- Unary relations are predicates on expressions (or sets of expressions)
- They can be used to prove type safety and strong normalization Binary relations
- Binary relations relate pairs of expressions of related types
- They can be used to prove equivalence of programs and non-interference properties.

Logical relations are a common proof method for programming languages.

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

What can do a term of type $\forall \alpha . \alpha \rightarrow i n t$?
\triangleright the function cannot examine its argument
\triangleright it always returns the same integer
$\triangleright \lambda x . n$,
$\lambda x .(\lambda y . y) n$,
$\lambda x .(\lambda y . n) x$.
etc.
\triangleright they are all $\beta \eta$-equivalent to the term λx.n

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

A term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright behaves as λx.n
A term a of type $\forall \alpha . \alpha \rightarrow \alpha$?
\triangleright behaves as $\lambda x . x$
A term type $\forall \alpha \beta . \alpha \rightarrow \beta \rightarrow \alpha$?
\triangleright behaves as $\lambda x . \lambda y . x$
A term type $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$?
\triangleright behaves either as $\lambda x . \lambda y . x$ or $\lambda x . \lambda y . y$

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {. list } \alpha \rightarrow \text { list } \alpha
$$

\triangleright The length of the result depends only on the length of the argument
\triangleright All elements of the results are elements of the argument
\triangleright The choice (i, j) of pairs such that i-th element of the result is the j-th element of the argument does not depend on the element itself.
\triangleright the function is preserved by a transformation of its argument that preserves the shape of the argument

$$
\forall f, x, \quad \text { whoami }(\operatorname{map} f x)=\operatorname{map} f(\text { whoami } x)
$$

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {.list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with $\operatorname{map} f$

$$
\begin{aligned}
&(\forall x, y, \quad \operatorname{cmp}(f x)(f y)=c m p x y) \Longrightarrow \\
& \forall \ell, \operatorname{sort} \operatorname{cmp}(\operatorname{map} f \ell)=\operatorname{map} f(\text { sort cmp } \ell)
\end{aligned}
$$

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha . \text { list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow b o o l) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with map f

$$
\left.\begin{array}{r}
\left(\forall x, y, \quad c m p_{2}(f x)(f y)=c m p_{1} x y\right) \Longrightarrow \\
\forall \ell, \text { sort } c m p_{2}(\text { map } f \ell)
\end{array}\right)=\operatorname{map} f(\text { sort cmp } \ell) .
$$

Application:
\triangleright If sort is correct on lists of integers, then it is correct on any list
\triangleright May be useful to reduce testing.

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {. list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with map f

$$
\begin{array}{r}
\left(\forall x, y, c m p_{2}(f x)(f y)=c m p_{1} \quad x y\right) \Longrightarrow \\
\forall \ell, \text { sort } c m p_{2}(\operatorname{map} f \ell)=\operatorname{map} f(\text { sort cmp } 1 \ell)
\end{array}
$$

Note that there are many other inhabitants of this type, but they all satisfy this free theorem. (e.g., a function that sorts in reverse order, or a function that removes (or adds) duplicates).

Parametricity

This phenomenon was studied by Reynolds [1983] and by Wadler [1989; 2007], among others. Wadler's paper contains the 'free theorem' about the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].
Bernardy et al. [2010] generalize the idea of testing polymorphic functions to arbitrary polymorphic types and show how testing any function can be restricted to testing it on (possibly infinitely many) particular values at some particular types.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs-as long as neither types nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important property of the design that non-termination is originating from the constructions introduced especially for recursion and could not occur without them.

The simply-typed λ-calculus is also lifted at the level of types in richer type systems such as F^{ω}; then, the decidability of type-equality depends on the termination of the reduction at the type level.

The proof of termination for the simply-typed λ-calculus is a simple and illustrative use of logical relations.

Notice however, that our simply-typed λ-calculus is equipped with a call-by-value semantics. Proofs of termination are usually done with a strong evaluation strategy where reduction can occur in any context.

Normalization

Proving termination of reduction in fragments of the λ-calculus is often a difficult task because reduction may create new redexes or duplicate existing ones.

Hence the size of terms may grow (much) larger during reduction. The difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern presentation in a call-by-value setting of an older proof by Hindley and Seldin [1986]. The proof method is due to [Tait, 1967].

Tait's method

Idea

- build the set \mathcal{T}_{τ} of terminating terms of type τ;
- show that any term of type τ is in \mathcal{T}_{τ}, by induction on terms.

This hypothesis is however too weak. The difficulty is as usual to find a strong enough induction hypothesis...

Terms of type $\tau_{1} \rightarrow \tau_{2}$ should not only terminate but also terminate when applied to terms in $\mathcal{T}_{\tau_{1}}$.

The construction of \mathcal{T}_{τ} is thus by induction of τ.

Normalization

Definition

Let \mathcal{T}_{τ} be defined inductively on τ as follows:

- \mathcal{T}_{α} is the set of closed terms that terminates;
- $\mathcal{T}_{\tau_{2} \rightarrow \tau_{1}}$ is the set of closed terms M_{1} of type $\tau_{2} \rightarrow \tau_{1}$ that terminates and such that $M_{1} M_{2}$ is in $\mathcal{T}_{\tau_{1}}$ for any term M_{2} in $\mathcal{T}_{\tau_{2}}$.

The set \mathcal{T}_{τ} can be seen as a predicate, i.e. a unary relation. It is called a logical relation because it is defined inductively on the structure of types.

The following proofs is then schematic of the use of logical relations.

Normalization

Reduction of terms of type τ preserves membership in \mathcal{T}_{τ} (this is stronger that stability of \mathcal{T}_{τ} by reduction):

Lemma
If $\varnothing \vdash M: \tau$ and $M \longrightarrow M^{\prime}$, then $M \in \mathcal{T}_{\tau}$ iff $M^{\prime} \in \mathcal{T}_{\tau}$.
Proof.
The proof is by induction on τ.
Lemma
For any type τ, the reduction of any term in \mathcal{T}_{τ} terminates.
Tautology, by definition of \mathcal{T}_{τ}.

Normalization

Therefore, it just remains to show that any term of type τ is in \mathcal{T}_{τ}, i.e.: Lemma

If $\varnothing \vdash M: \tau$, then $M \in \mathcal{T}_{\tau}$.
The proof is by induction on (the typing derivation of) M.
However, the case for abstraction requires some similar statement, but for open terms. We need to strengthen the Lemma.

A trick to avoid considering open terms is to require the statement to hold for all closed instances of an open term:

Lemma (strenghened)
If $\left(x_{i}: \tau_{i}\right)^{i \in I} \vdash M: \tau$, then for any closed values $\left(V_{i}\right)^{i \in I}$ in $\left(\mathcal{T}_{\tau_{i}}\right)^{i \in I}$, the term $\left[\left(x_{i} \mapsto V_{i}\right)^{i \in I}\right] M$ is in \mathcal{T}_{τ}.

Normalization

Proof. By structural induction on M.
We write Γ for $\left(x_{i}: \tau_{i}\right)^{i \in I}$ and θ for $\left[\left(x_{i} \mapsto V_{i}\right)^{i \in I}\right]$. Assume $\Gamma \vdash M: \tau$.
The only interesting case is when M is $\lambda x: \tau_{1} . M_{2}$:
By inversion of typing, we know that $\Gamma, x: \tau_{1} \vdash M_{2}: \tau_{2}$ and $\tau_{1} \rightarrow \tau_{2}$ is τ.
To show $\theta M \in \mathcal{T}_{\tau}$, we must show that it is terminating, which holds as it is a value, and that its application to any M_{1} in $\mathcal{T}_{\tau_{1}}$ is in $\mathcal{T}_{\tau_{2}}(\mathbf{1})$. Let $M_{1} \in \mathcal{T}_{\tau_{1}}$. By definition $M_{1} \longrightarrow^{*} V(2)$. We then have:

$$
\begin{aligned}
(\theta M) M_{1} & \triangleq\left(\theta\left(\lambda x: \tau_{1} \cdot M_{2}\right)\right) M_{1} \\
& =\left(\lambda x: \tau_{1} \cdot \theta M_{2}\right) M_{1} \\
& \longrightarrow\left(\lambda x: \tau_{1} \cdot \theta M_{2}\right) V \\
& \longrightarrow[x \mapsto V]\left(\theta M_{2}\right) \\
& =([x \mapsto V] \theta)\left(M_{2}\right) \in \mathcal{T}_{\tau_{2}}
\end{aligned}
$$

by definition of M choose $x \# \vec{x}$ by (2)
by (β)
by induction hypothesis

This establishes (1) since membership in $\mathcal{T}_{\tau_{2}}$ is preserved by reduction.

Calculus

Take the call-by-value $\lambda_{s t}$ with primitive booleans and conditional. Write B the type of booleans and tt and ff for true and false.

We define $\mathcal{V} \llbracket \tau \rrbracket$ and $\mathcal{E} \llbracket \tau \rrbracket$ the subsets of closed values and closed expressions of (ground) type τ by induction on types as follows:

$$
\begin{aligned}
\mathcal{V} \llbracket \mathrm{B} \rrbracket & \triangleq\{\mathrm{tt}, \mathrm{ff}\} \\
\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \triangleq\left\{\lambda x: \tau_{1} \cdot M \mid \forall V \in \mathcal{V} \llbracket \tau_{1} \rrbracket, \quad\left(\lambda x: \tau_{1} \cdot M\right) V \in \mathcal{E} \llbracket \tau_{2} \rrbracket\right\} \\
\mathcal{E} \llbracket \tau \rrbracket & \triangleq\{M \mid \exists V \in \mathcal{V} \llbracket \tau \rrbracket, M \Downarrow V\}
\end{aligned}
$$

We write $M \Downarrow N$ for $M \longrightarrow{ }^{*} N$.
The goal is to show that any closed expression of type τ is in $\mathcal{E} \llbracket \tau \rrbracket$.

Remarks

Although usual with logical relations, well-typedness is actually not required here and omitted: otherwise, we would have to carry unnecessary type-preservation proof obligations. $\mathcal{V} \llbracket \tau \rrbracket \subseteq \mathcal{E} \llbracket \tau \rrbracket$ —by definition. $\mathcal{E} \llbracket \tau \rrbracket$ is closed by inverse reduction-by definition, i.e. If $M \| N$ and $N \in \mathcal{E}\|\tau\|$ then $M \in \mathcal{E} \| \tau \Pi$

Problem

We wish to show that every closed term of type τ is in $\mathcal{E} \llbracket \tau \rrbracket$

- Proof by induction on the typing derivation.
- Problem with abstraction: the premise is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open terms.

- The semantics of open terms can be given by abstracting over the semantics of their free variables.

Generalize the definition to open terms

We define a semantic judgment for open terms $\Gamma \vDash M: \tau$ so that $\Gamma \vdash M: \tau$ implies $\Gamma \vDash M: \tau$ and $\varnothing \vDash M: \tau$ means $M \in \mathcal{E} \llbracket \tau \rrbracket$.

We interpret free term variables of type τ as closed values in $\mathcal{V} \llbracket \tau \rrbracket$.
We interpret environments Γ as closing substitutions γ, i.e. mappings from term variables to closed values:

We write $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$ to mean $\operatorname{dom}(\gamma)=\operatorname{dom}(\Gamma)$ and $\gamma(x) \in \mathcal{V} \llbracket \tau \rrbracket$ for all $x: \tau \in \Gamma$.

$$
\Gamma \vDash M: \tau \stackrel{\text { def }}{\Longleftrightarrow} \forall \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket, \quad \gamma(M) \in \mathcal{E} \llbracket \tau \rrbracket
$$

Fundamental Lemma

Theorem (fundamental lemma)
If $\Gamma \vdash M: \tau$ then $\Gamma \vDash M: \tau$.
Corollary (termination of well-typed terms):
If $\varnothing \vdash M: \tau$ then $M \in \mathcal{E} \llbracket \tau \rrbracket$.
That is, closed well-typed terms of type τ evaluate to values of type τ.

Proof by induction on the typing derivation

Routine cases

Case $\Gamma \vdash \mathrm{tt}: \mathrm{B}$ or $\Gamma \vdash \mathrm{ff}: \mathrm{B}$: by definition, $\mathrm{tt}, \mathrm{ff} \in \mathcal{V} \llbracket \mathrm{B} \rrbracket$ and $\mathcal{V} \llbracket \mathrm{B} \rrbracket \subseteq \mathcal{E} \llbracket \mathrm{B} \rrbracket$.
Case $\Gamma \vdash x: \tau: \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$, thus $\gamma(x) \in \mathcal{V} \llbracket \tau \rrbracket \subseteq \mathcal{E} \llbracket \tau \rrbracket$
Case $\Gamma \vdash M_{1} M_{2}: \tau$:
By inversion, $\Gamma \vdash M_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash M_{2}: \tau_{2}$.
Let $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$. We have $\gamma\left(M_{1} M_{2}\right)=\left(\gamma M_{1}\right)\left(\gamma M_{2}\right)$.
By IH , we have $\Gamma \vDash M_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vDash M_{2}: \tau_{2}$.
Thus $\gamma M_{1} \in \mathcal{E} \llbracket \tau_{2} \rightarrow \tau \rrbracket(\mathbf{1})$ and $\gamma M_{2} \in \mathcal{E} \llbracket \tau_{2} \rrbracket(\mathbf{2})$.
By (2), there exists $V \in \mathcal{V} \llbracket \tau_{2} \rrbracket$ such that $\gamma M_{2} \Downarrow V$.
Thus $\left(\gamma M_{1}\right)\left(\gamma M_{2}\right) \Downarrow\left(\gamma M_{1}\right) V \in \mathcal{E} \llbracket \tau \rrbracket$ by (1).
Then, $\left(\gamma M_{1}\right)\left(\gamma M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$, by closure by inverse reduction.
Case $\Gamma \vdash$ if M then M_{1} else $M_{2}: \tau$: By cases on the evaluation of γM.

Proof by induction on the typing derivation

The interesting case

Case $\Gamma \vdash \lambda x: \tau_{1} . M: \tau_{1} \rightarrow \tau:$
Assume $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$.
We must show that $\gamma\left(\lambda x: \tau_{1} . M\right) \in \mathcal{E} \llbracket \tau_{1} \rightarrow \tau \rrbracket$ (1)
That is, $\lambda x: \tau_{1} . \gamma M \in \mathcal{V} \llbracket \tau_{1} \rightarrow \tau \rrbracket$ (we may assume $x \notin \operatorname{dom}(\gamma)$ w.l.o.g.) Let $V \in \mathcal{V} \llbracket \tau_{1} \rrbracket$, it suffices to show $\left(\lambda x: \tau_{1} . \gamma M\right) V \in \mathcal{E} \llbracket \tau \rrbracket$ (2).

We have $\left(\lambda x: \tau_{1} \cdot \gamma M\right) V \longrightarrow(\gamma M)[x \mapsto V]=\gamma^{\prime} M$ where γ^{\prime} is $\gamma[x \mapsto V] \in \mathcal{G} \llbracket \Gamma, x: \tau_{1} \rrbracket$ (3)

Since $\Gamma, x: \tau_{1} \vdash M: \tau$, we have $\Gamma, x: \tau_{1} \vDash M: \tau$ by IH on M. Therefore by (3), we have $\gamma^{\prime} M \in \mathcal{E} \llbracket \tau \rrbracket$. Since $\mathcal{E} \llbracket \tau \rrbracket$ is closed by inverse reduction, this proves (2) which finishes the proof of (1).

Variations

We have shown both termination and type soundness, simultaneously.
Termination would not hold if we had a fix point.
But type soundness would still hold.
The proof may be modified by choosing:

$$
\mathcal{E} \llbracket \tau \rrbracket=\left\{M: \tau \mid \forall N, M \Downarrow N \Longrightarrow\left(N \in \mathcal{V} \llbracket \tau \rrbracket \vee \exists N^{\prime}, N \longrightarrow N^{\prime}\right)\right\}
$$

Compare with

$$
\mathcal{E} \llbracket \tau \rrbracket=\{M: \tau \mid \exists V \in \mathcal{V} \llbracket \tau \rrbracket, M \Downarrow V\}
$$

Exercise
Show type soundness with this semantics.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

(Bibliography)

Mostly following Bob Harper's course notes Practical foundations for programming languages [Harper, 2012].

See also

- Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]
- Parametric Polymorphism and Operational Equivalence [Pitts, 2000].
- Theorems for free! [Wadler, 1989].
- Course notes taken by Lau Skorstengaard on Amal Ahmed's OPLSS lectures.

We assume a call-by-value operational semantics instead of call-by-name in [Harper, 2012].

When are two programs equivalent

$M \Downarrow N$?
$M \Downarrow V$ and $N \Downarrow V$?
But what if M and N are functions?

$$
\text { Aren't } \quad \lambda x .(x+x) \text { and } \quad \lambda x .2 * x \quad \text { equivalent? }
$$

Idea two functions are observationally equivalent if when applied to equivalent arguments, they lead to observationally equivalent results.

Are we general enough?

Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of some computation type, such as B (the only one so far).

If $M: \mathrm{B}$ and $N: \mathrm{B}$, then $M \simeq N$ iff there exists V such that $M \Downarrow V$ and $N \Downarrow V$. (Call $M \simeq N$ behavioral equivalence.)

To compare programs at other types, we place them in arbitrary closing contexts.

Definition (observational equivalence)

$$
\Gamma \vdash M \cong N: \tau \triangleq \forall \mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\varnothing \triangleright \mathrm{B}), \mathcal{C}[M] \simeq \mathcal{C}[N]
$$

Typing of contexts
$\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma) \Longleftrightarrow(\forall M, \Gamma \vdash M: \tau \Longrightarrow \Delta \vdash \mathcal{C}[M]: \sigma)$
There is an equivalent definition given by a set of typing rules. This is needed to prove some properties by induction on the typing derivations.

We write $M \cong \tau$ for $\varnothing \vdash M \cong N: \tau$

Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:
\equiv is consistent if $\varnothing \vdash M \equiv N: \mathrm{B}$ implies $M \simeq N$.
\equiv is a congruence if it is an equivalence and is closed by context, i.e.

$$
\Gamma \vdash M \equiv N: \tau \wedge \mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma) \Longrightarrow \Delta \vdash \mathcal{C}[M] \equiv \mathcal{C}[N]: \sigma
$$

Consistent: by definition, using the empty context.
Congruence: by compositionality of contexts.
Coarsiest: Assume \equiv is a consistent congruence.
We assume $\Gamma \vdash M \equiv N: \tau(1)$ and show $\Gamma \vdash M \cong N: \tau$.
Let $\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\varnothing \triangleright \mathrm{B})(2)$. We must show that $\mathcal{C}[M] \simeq \mathcal{C}[N]$.
This follows by consistency applied to $\Gamma \vdash \mathcal{C}[M] \equiv \mathcal{C}[N]: \mathrm{B}$ which itself follows by congruence from (1) and (2).

Problem with Observational Equivalence

Problems

- Observational equivalence is too difficult to test.
- Because of quantification over all contexts (too many for testing).
- But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

- Defining/testing the equivalence on base types.
- Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Logical equivalence for closed terms

Unary logical relations interpret types by predicates on (i.e. sets of) closed values of that type.

Binary relations interpret types by binary relations on closed values of that type, i.e. sets of pairs of related values of that type.

That is $\mathcal{V} \llbracket \tau \rrbracket \subseteq \operatorname{Val}(\tau) \times \operatorname{Val}(\tau)$.
Then, $\mathcal{E} \llbracket \tau \rrbracket$ is the closure of $\mathcal{V} \llbracket \tau \rrbracket$ by inverse reduction
We have $\mathcal{V} \llbracket \tau \rrbracket \subseteq \mathcal{E} \llbracket \tau \rrbracket \subseteq \operatorname{Exp}(\tau) \times \operatorname{Exp}(\tau)$.

Logical equivalence for closed terms

We recursively define two relations $\mathcal{V} \llbracket \tau \rrbracket$ and $\mathcal{E} \llbracket \tau \rrbracket$ between values of type τ and expressions of type τ by

$$
\begin{aligned}
& \mathcal{V} \llbracket \mathrm{B} \rrbracket \triangleq\{(\mathrm{tt}, \mathrm{tt}),(\mathrm{ff}, \mathrm{ff})\} \\
& \mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket \triangleq\left\{\left(V_{1}, V_{2}\right) \mid V_{1}, V_{2} \vdash \tau \rightarrow \sigma \wedge\right. \\
&\left.\quad \forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket,\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket\right\} \\
& \mathcal{E} \llbracket \tau \rrbracket \triangleq\left\{\left(M_{1}, M_{2}\right) \mid M_{1}, M_{2}: \tau \wedge \quad \text { where } \Downarrow\left(M_{1}, M_{2}\right)\right. \text { means } \\
& \quad\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket, M_{1} \Downarrow V_{1} \uparrow\left(M_{2} \text { 收 } V_{2} \mathrm{~V}_{2} \Downarrow T_{i} \Downarrow V_{i}\right\}
\end{aligned}
$$

In the following we will leave the typing constraint in gray implicit (as a global condition for sets $\mathcal{V} \llbracket \cdot \rrbracket$ and $\mathcal{E} \llbracket \cdot \rrbracket$).

We also write

$$
\begin{aligned}
& M_{1} \sim \tau M_{2} \text { for }\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \text { and } \\
& V_{1} \approx_{\tau} \tau V_{2} \text { for }\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket .
\end{aligned}
$$

Logical equivalence for closed terms (variant)

In a language with non-termination
We change the definition of $\mathcal{E} \llbracket \tau \rrbracket$ to

$$
\begin{aligned}
& \mathcal{E} \llbracket \tau \rrbracket \triangleq\{ \left(M_{1}, M_{2}\right) \mid M_{1}, M_{2}: \tau \wedge \\
&\left(\forall V_{1}, M_{1} \Downarrow V_{1} \Longrightarrow \exists V_{2}, M_{2} \Downarrow V_{2} \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket\right) \\
&\left.\wedge\left(\forall V_{2}, M_{2} \Downarrow V_{2} \Longrightarrow \exists V_{1}, M_{1} \Downarrow V_{1} \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket\right)\right\}
\end{aligned}
$$

Notice

$$
\begin{aligned}
\mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket \triangleq & \left\{\left(V_{1}, V_{2}\right) \mid V_{1}, V_{2} \vdash \tau \rightarrow \sigma \wedge\right. \\
& \left.\forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket,\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket\right\} \\
= & \left\{\left(\left(\lambda x: \tau . M_{1}\right),\left(\lambda x: \tau . M_{2}\right)\right) \mid\left(\lambda x: \tau . M_{1}\right),\left(\lambda x: \tau . M_{2}\right) \vdash \tau \rightarrow \sigma \wedge\right. \\
& \left.\forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket,\left(\left(\lambda x: \tau . M_{1}\right) W_{1},\left(\lambda x: \tau . M_{2}\right) W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket\right\}
\end{aligned}
$$

Properties of logical equivalence for closed terms

Closure by reduction

By definition, since reduction is deterministic: Assume $M_{1} \Downarrow N_{1}$ and $M_{2} \Downarrow N_{2}$ and $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$, i.e. there exists $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket(1)$ such that $M_{i} \Downarrow V_{i}$. Since reduction is deterministic, we must have $M_{i} \Downarrow N_{i} \Downarrow V_{i}$. This, together with (1), implies $\left(N_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$.

Closure by inverse reduction

Immediate, by construction of $\mathcal{E} \llbracket \tau \rrbracket$.

Corollaries

- If $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rightarrow \sigma \rrbracket$ and $\left(N_{1}, N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$, then $\left(M_{1} N_{1}, M_{2} N_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$.
- To prove $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rightarrow \sigma \rrbracket$, it suffices to show $\left(M_{1} V_{1}, M_{2} V_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$ for all $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket$.

Properties of logical equivalence for closed terms

Consistency $(\sim$ B) $\subseteq(\simeq)$
Immediate, by definition of $\mathcal{E} \llbracket \mathrm{B} \rrbracket$ and $\mathcal{V} \llbracket \mathrm{B} \rrbracket \subseteq(\simeq)$.
Lemma
Logical equivalence is symmetric and transitive (at any given type).
Note: Reflexivity is not at all obvious.

Proof

We show it simultaneously for \sim_{τ} and \approx_{τ} by induction on type τ.

Logical equivalence for closed terms

We inductively define $M_{1} \sim_{\tau} M_{2}$ (read M_{1} and M_{2} are logically equivalent at type τ) on closed terms of (ground) type τ by induction on τ :

- $M_{1} \sim_{B} M_{2}$ iff $\varnothing \vdash M_{1}, M_{2}: B$ and $M_{1} \simeq M_{2}$
- $M_{1} \sim_{\tau \rightarrow \sigma} M_{2}$ iff $\varnothing \vdash M_{1}, M_{2}: \tau \rightarrow \sigma$ and

$$
\forall N_{1}, N_{2}, \quad N_{1} \sim_{\tau} N_{2} \Longrightarrow M_{1} N_{1} \sim_{\sigma} M_{2} N_{2}
$$

Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note

Reflexivity is not at all obvious.

Properties of logical equivalence for closed terms (proof)

For \sim_{τ}, the proof is immediate by transitivity and symmetry of \approx_{τ}.
For \approx_{τ}, it goes as follows.
Case τ is B for values: the result is immediate.
Case τ is $\tau \rightarrow \sigma$:
By IH , symmetry and transitivity hold at types τ and σ.
For symmetry, assume $V_{1} \approx_{\tau \rightarrow \sigma} V_{2}(\mathrm{H})$, we must show $V_{2} \approx_{\tau \rightarrow \sigma} V_{1}$.
Assume $W_{1} \approx_{\tau} W_{2}$. We must show $V_{2} W_{1} \sim_{\sigma} V_{1} W_{2}(\mathrm{C})$. We have $W_{2} \approx_{\tau} W_{1}$ by symmetry at type τ. By (H), we have $V_{2} W_{2} \sim_{\sigma} V_{1} W_{1}$ and (C) follows by symmetry of \sim at type σ.

For transitivity, assume $V_{1} \approx_{\tau \rightarrow \sigma} V_{2}(\mathrm{H} 1)$ and $V_{2} \approx_{\tau \rightarrow \sigma} V_{3}(\mathrm{H} 2)$. To show $V_{1} \approx_{\tau \rightarrow \sigma} V_{3}$, we assume $W_{1} \approx_{\tau} W_{3}$ and show $V_{1} W_{1} \sim_{\sigma} V_{3} W_{3}$ (C).
By (H 1), we have $V_{1} W_{1} \sim_{\sigma} V_{2} W_{3}(\mathrm{C} 1)$.
By symmetry and transitivity of $\approx_{\tau}(\mathrm{IH})$, we get $W_{3} \approx_{\tau} W_{3}$. It's not reflexivity! By (H 2), we have $V_{2} W_{3} \sim_{\sigma} V_{3} W_{3}(\mathrm{C} 2)$.
(C) follows by transitivity of \sim_{σ} applied to (C1) and (C2).

Logical equivalence for open terms

When $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$, we wish to define a judgment $\Gamma \vdash M_{1} \sim M_{2}: \tau$ to mean that the open terms M_{1} and M_{2} are equivalent at type τ.

The solution is to interpret program variables of dom (Γ) by pairs of related values and typing contexts Γ by a set of (closing) bisubstitutions γ mapping variable type assignments to pairs of related values.

$$
\begin{aligned}
\mathcal{G} \llbracket \varnothing \rrbracket & \triangleq\{\varnothing\} \\
\mathcal{G} \llbracket \Gamma, x: \tau \rrbracket & \triangleq\left\{\gamma, x \mapsto\left(V_{1}, V_{2}\right) \mid \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket\right\}
\end{aligned}
$$

Given a bisubstitution γ, we write γ_{i} for the substitution that maps x to V_{i} whenever γ maps x to $\left(V_{1}, V_{2}\right)$.

Definition

$$
\Gamma \vdash M_{1} \sim M_{2}: \tau \quad \Longleftrightarrow \quad \forall \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket, \quad\left(\gamma_{1} M_{1}, \gamma_{2} M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket
$$

We also write $\vdash M_{1} \sim M_{2}: \tau$ or $M_{1} \sim \tau M_{2}$ for $\varnothing \vdash M_{1} \sim M_{2}: \tau$.

Properties of logical equivalence for open terms

Immediate properties

Open logical equivalence is symmetric and transitive.
(Proof is immediate by the definition and the symmetry and transitivity of closed logical equivalence.)

Fundamental lemma of logical equivalence

```
Theorem (Reflexivity) (also called the fundamental lemma))
If }\Gamma\vdashM:\tau\mathrm{ , then }\Gamma\vdashM~M:\tau\mathrm{ .
```

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-True	C-False	C-VAR
$\Gamma \vdash \mathrm{tt} \sim \mathrm{tt}:$ bool	$\Gamma \vdash \mathrm{ff} \sim \mathrm{ff}:$ bool	$\frac{x: \tau \in \Gamma}{\Gamma \vdash x \sim x: \tau}$

$$
\begin{aligned}
& \text { C-ABS } \\
& \frac{\Gamma, x: \tau \vdash M_{1} \sim M_{2}: \sigma}{\Gamma \vdash \lambda x: \tau . M_{1} \sim \lambda x: \tau . M_{2}: \tau \rightarrow \sigma}
\end{aligned}
$$

C-App

$$
\frac{\Gamma \vdash M_{1} \sim M_{2}: \tau \rightarrow \sigma \quad \Gamma \vdash N_{1} \sim N_{2}: \tau}{\Gamma \vdash M_{1} N_{1} \sim M_{2} N_{2}: \sigma}
$$

C-IF

$$
\frac{\Gamma \vdash M_{1} \sim M_{2}: \mathrm{B} \quad \Gamma \vdash N_{1} \sim N_{2}: \tau \quad \Gamma \vdash N_{1}^{\prime} \sim N_{2}^{\prime}: \tau}{\Gamma \vdash \text { if } M_{1} \text { then } N_{1} \text { else } N_{1}^{\prime} \sim \text { if } M_{2} \text { then } N_{2} \text { else } N_{2}^{\prime}: \tau}
$$

Proof of compatibility lemmas

Each case can be shown independently.
Rule C-Abs: Assume $\Gamma, x: \tau \vdash M_{1} \sim M_{2}: \sigma(\mathbf{1})$
We show $\Gamma \vdash \lambda x: \tau . M_{1} \sim \lambda x: \tau . M_{2}: \tau \rightarrow \sigma$. Let $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$.
We show $\left(\gamma_{1}\left(\lambda x: \tau . M_{1}\right), \gamma_{2}\left(\lambda x: \tau . M_{2}\right)\right) \in \mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket$. Let $\left(V_{1}, V_{2}\right)$ be in $\mathcal{V} \llbracket \tau \rrbracket$.
We show $\left(\gamma_{1}\left(\lambda x: \tau . M_{1}\right) V_{1}, \gamma_{2}\left(\lambda x: \tau . M_{2}\right) V_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket(2)$.
Since $\gamma_{i}\left(\lambda x: \tau . M_{i}\right) V_{i} \Downarrow\left(\gamma_{i}, x \mapsto V_{i}\right) M_{i} \triangleq \gamma_{i}^{\prime} M_{i}$, by inverse reduction, it suffices to show $\left(\gamma_{1}^{\prime} M_{1}, \gamma_{2}^{\prime} M_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$. This follows from (1) since $\gamma^{\prime} \in \mathcal{G} \llbracket \Gamma, x: \tau \rrbracket$.

Rule C-App (and C-IF): By induction hypothesis and the fact that substitution distributes over applications (and conditional).

We must show $\Gamma \vdash M_{1} N_{1} \sim M_{2} M_{2}: \sigma(1)$. Let $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$. From the premises $\Gamma \vdash M_{1} \sim M_{2}: \tau \rightarrow \sigma$ and $\Gamma \vdash N_{1} \sim N_{2}: \tau$, we have $\left(\gamma_{1} M_{1}, \gamma_{2} M_{2}\right) \in \mathcal{E} \llbracket \tau \rightarrow \sigma \rrbracket$ and $\left(\gamma_{1} N_{1}, \gamma_{2} N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$. Therefore $\left(\gamma_{1} M_{1} \gamma_{1} N_{1}, \gamma_{2} M_{2} \gamma_{2} N_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$. That is $\left(\gamma_{1}\left(M_{1} N_{1}\right), \gamma_{2}\left(M_{2} N_{2}\right)\right) \in \mathcal{E} \llbracket \sigma \rrbracket$, which proves (1).

Rule C-True, C-False, and C-Var: are immediate

Proof of compatibility lemmas (cont.)

Rule C-IF: We show $\Gamma \vdash$ if M_{1} then N_{1} else $N_{1}^{\prime} \sim$ if M_{2} then N_{2} else $N_{2}^{\prime}: \tau$. Assume $\gamma \in \mathcal{G} \llbracket \gamma \rrbracket$.
We show $\left(\gamma_{1}\left(\right.\right.$ if M_{1} then N_{1} else $\left.N_{1}^{\prime}\right), \gamma_{2}\left(\right.$ if M_{2} then N_{2} else $\left.\left.N_{2}^{\prime}\right)\right) \in \mathcal{E} \llbracket \tau \rrbracket$, That is (if $\gamma_{1} M_{1}$ then $\gamma_{1} N_{1}$ else $\gamma_{1} N_{1}^{\prime}$, if $\gamma_{2} M_{2}$ then $\gamma_{2} N_{2}$ else $\gamma_{2} N_{2}^{\prime}$) $\in \mathcal{E} \llbracket \tau \rrbracket(\mathbf{1})$.

From the premise $\Gamma \vdash M_{1} \sim M_{2}$: B, we have $\left(\gamma_{1} M_{1}, \gamma_{2} M_{2}\right) \in \mathcal{E} \llbracket \mathrm{B} \rrbracket$. Therefore $M_{1} \Downarrow V$ and $M_{2} \Downarrow V$ where V is either tt or ff:

- Case V is tt:. Then, (if $\gamma_{i} M_{i}$ then $\gamma_{i} N_{i}$ else $\gamma_{i} N_{i}^{\prime}$) $\Downarrow \gamma_{i} N_{i}$, i.e. $\gamma_{i}\left(\right.$ if M_{i} then N_{i} else $\left.N_{i}^{\prime}\right) \Downarrow \gamma_{i} N_{i}$. From the premise $\Gamma \vdash N_{1} \sim N_{2}: \tau$, we have $\left(\gamma_{1} N_{1}, \gamma_{2} N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$ and (1) follows by closer by inverse reduction.
- Case V is ff : similar.

Proof of reflexivity

By induction on the derivation of $\Gamma \vdash M: \tau$.
We must show $\Gamma \vdash M \sim M: \tau$:

All cases immediately follow from compatibility lemmas.
Case M is it or ff: Immediate by Rule C-True or Rule C-False
Case M is x : Immediate by Rule C-Var.
Case M is $M^{\prime} N$: By inversion of the typing rule App, induction hypothesis, and Rule C-App.

Case M is $\lambda \tau: N$.: By inversion of the typing rule ABS, induction hypothesis, and Rule C-Abs.

Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation
Logical equivalence is a congruence
If $\Gamma \vdash M \sim M^{\prime}: \tau$ and $\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma)$, then
$\Delta \vdash \mathcal{C}[M] \sim \mathcal{C}\left[M^{\prime}\right]: \sigma$.
Proof By induction on the proof of $\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma)$.
Similar to the proof of reflexivity-but we need a syntactic definition of context-typing derivations (which we have omitted) to be able to reason by induction on the context-typing derivation.

Soundness of logical equivalence

Logical equivalence implies observational equivalence.
If $\Gamma \vdash M \sim M^{\prime}: \tau$ then $\Gamma \vdash M \cong M^{\prime}: \tau$.
Proof: Logical equivalence is a consistent congruence, hence included in observational equivalence which is the coarsiest such relation.

Properties of logical equivalence

Completeness of logical equivalence

Observational equivalence of closed terms implies logical equivalence.
That is $\left(\cong_{\tau}\right) \subseteq\left(\sim_{\tau}\right)$.
Proof by induction on τ.
Case B: In the empty context, by consistency \cong_{B} is a subrelation of \simeq_{B} which coincides with \sim_{B}.

Case $\tau \rightarrow \sigma$: By congruence of observational equivalence!
By hypothesis, we have $M_{1} \cong{ }_{\tau \rightarrow \sigma} M_{2}$ (1). To show $M_{1} \sim_{\tau \rightarrow \sigma} M_{2}$, we assume $V_{1} \approx_{\tau} V_{2}(\mathbf{2})$ and show $M_{1} V_{1} \sim_{\sigma} M_{2} V_{2}$ (3).

By soundness applied to (2), we have $V_{1} \cong{ }_{\tau} V_{2}$ from (2). By congruence with (1), we have $M_{1} V_{1} \cong{ }_{\sigma} M_{2} V_{2}$, which implies (3) by IH at type σ.

Logical equivalence: example of application

Fact: Assume $n o t \triangleq \lambda x$: B. if x then ff else tt and $M \triangleq \lambda x: \mathrm{B} . \lambda y: \tau . \lambda z: \tau$. if not x then y else z and $M^{\prime} \triangleq \lambda x: \mathrm{B} . \lambda y: \tau$. $\lambda z: \tau$. if x then z else y.

Show that $M \cong_{\mathrm{B} \rightarrow \tau \rightarrow \tau \rightarrow \tau} M^{\prime}$.

Proof

It suffices to show $M V_{0} V_{1} V_{2} \sim_{\tau} M^{\prime} V_{0}^{\prime} V_{1}^{\prime} V_{2}^{\prime}$ whenever $V_{0} \approx_{\mathrm{B}} V_{0}^{\prime}$ (1) and $V_{1} \approx_{\tau} V_{1}^{\prime}(\mathbf{2})$ and $V_{2} \approx_{\tau} V_{2}^{\prime}(3)$. By inverse reduction, it suffices to show: if not V_{0} then V_{1} else $V_{2} \sim_{\tau}$ if V_{0}^{\prime} then V_{2}^{\prime} else $V_{1}^{\prime}(4)$.

It follows from (1) that we have only two cases:
Case $V_{0}=V_{0}^{\prime}=\mathrm{tt}$: Then not $V_{0} \Downarrow$ ff and thus $M \Downarrow V_{2}$ while $M^{\prime} \Downarrow V_{2}$. Then (4) follows by inverse reduction and (3).

Case $V_{0}=V_{0}^{\prime}=\mathrm{ff}$: is symmetric.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Observational equivalence

We now extend the notion of logical equivalence to System F.

$$
\tau::=\ldots|\alpha| \forall \alpha . \tau \quad M::=\ldots|\Lambda \alpha . M| M \tau
$$

We write typing contexts $\Delta ; \Gamma$ where Δ binds variables and Γ binds program variables.

Typing of contexts becomes $\mathcal{C}:(\Delta ; \Gamma \triangleright \tau) \leadsto\left(\Delta^{\prime} ; \Gamma^{\prime} \triangleright \tau^{\prime}\right)$.

Observational equivalence

We (re)defined $\Delta ; \Gamma \vdash M \cong M^{\prime}: \tau$ as

$$
\forall \mathcal{C}:(\Delta ; \Gamma \triangleright \tau) \leadsto(\varnothing ; \varnothing \triangleright \mathrm{B}), \mathcal{C}[M] \simeq \mathcal{C}\left[M^{\prime}\right]
$$

As before, write $M \cong_{\tau} N$ for $\varnothing ; \varnothing \vdash M \cong N: \tau$ (in particular, τ is closed).

Logical equivalence

For closed terms (no free program variables)

- We need to give the semantics of polymoprhic types $\forall \alpha . \tau$
- Problem: We cannot do it in terms of the semantics of instances $\tau[\alpha \mapsto \sigma]$ since the semantics is defined by induction on types.
- Solution: we give the semantics of terms with open types-in some suitable environment that interprets type variables by logical relations (sets of pairs of related values) of closed types ρ_{1} and ρ_{2}

Let $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$ be the set of relations on values of closed types ρ_{1} and ρ_{2}, that is $\mathcal{P}\left(\operatorname{Val}\left(\rho_{1}\right) \times \operatorname{Val}\left(\rho_{2}\right)\right)$. We optionally restrict to admissible relations, i.e. relations that are closed by observational equivalence:

$$
\begin{aligned}
& R \in \mathcal{R}^{\sharp}\left(\tau_{1}, \tau_{2}\right) \Longrightarrow \\
& \quad \forall\left(V_{1}, V_{2}\right) \in R, \forall W_{1}, W_{2}, W_{1} \cong V_{1} \wedge W_{2} \cong V_{2} \Longrightarrow\left(W_{1}, W_{2}\right) \in R
\end{aligned}
$$

The restriction to admissible relations is required for completeness of logical equivalence with respect to observational equivalence but not for soundness.

Example of admissible relations

For example, both

$$
\begin{aligned}
& R_{1} \triangleq\{(\mathrm{tt}, 0),(\mathrm{ff}, 1)\} \\
& R_{2} \triangleq\{(\mathrm{tt}, 0)\} \cup\left\{(\mathrm{ff}, n) \mid n \in \mathbb{Z}^{\star}\right\}
\end{aligned}
$$

are admissible relations in $\mathcal{R}^{\sharp}(\mathrm{B}, i n t)$.
But

$$
R_{3} \triangleq\{(\mathrm{tt}, \lambda x: \tau .0),(\mathrm{ff}, \lambda x: \tau .1)\}
$$

although in $\mathcal{R}(\mathrm{B}, \tau \rightarrow$ int $)$, is not admissible.
Taking $M_{0} \triangleq \lambda x: \tau .\left(\lambda z:\right.$ int.z) 0 , we have $M \cong_{\tau \rightarrow i n t} \lambda x: \tau .0$ but (tt, M) is not in R_{3}. Note A relation R in $\mathcal{R}\left(\tau_{1}, \tau_{2}\right)$ can always be turned into an admissible relation R^{\sharp} in $\mathcal{R}^{\sharp}\left(\tau_{1}, \tau_{2}\right)$ by closing R by observational equivalence.

Note It is a key that such relations can relate values at different types.

Interpretation of type environments

Interpretation of type variables

We write η for mappings $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$ where $R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right)$.
We write $\eta_{i}\left(\right.$ resp. $\left.\eta_{R}\right)$ for the type (resp. relational) substitution that maps α to $\rho_{i}\left(\right.$ resp. R) whenever η maps α to $\left(\rho_{1}, \rho_{2}, R\right)$.

We define

$$
\begin{aligned}
\mathcal{V} \llbracket \alpha \rrbracket_{\eta} \triangleq & \eta_{R}(\alpha) \\
\mathcal{V} \llbracket \forall \alpha \cdot \tau \rrbracket_{\eta} \triangleq & \left\{\left(V_{1}, V_{2}\right) \mid V_{1}: \eta_{1}(\forall \alpha \cdot \tau) \wedge V_{2}: \eta_{2}(\forall \alpha \cdot \tau) \wedge\right. \\
& \left.\forall \rho_{1}, \rho_{2}, \forall R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right),\left(V_{1} \rho_{1}, V_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta, \alpha \leftrightarrow\left(\rho_{1}, \rho_{2}, R\right)}\right\}
\end{aligned}
$$

Logical equivalence for closed terms with open types

We redefine

$$
\begin{aligned}
& \mathcal{V} \llbracket \mathrm{B} \rrbracket_{\eta} \triangleq \triangleq\{(\mathrm{tt}, \mathrm{tt}),(\mathrm{ff}, \mathrm{ff})\} \\
& \mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket \eta \triangleq\left\{\left(V_{1}, V_{2}\right) \mid V_{1} \vdash \eta_{1}(\tau \rightarrow \sigma) \wedge V_{2} \vdash \eta_{2}(\tau \rightarrow \sigma) \wedge\right. \\
&\left.\forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \eta,\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket \eta\right\} \\
& \mathcal{E} \llbracket \tau \rrbracket \eta \triangleq\left\{\left(M_{1}, M_{2}\right) \mid M_{1}: \eta_{1} \tau \wedge M_{2}: \eta_{2} \tau \wedge\right. \\
&\left.\exists\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \eta, M_{1} \Downarrow V_{1} \wedge M_{2} \Downarrow V_{2}\right\} \\
& \mathcal{G} \llbracket \varnothing \rrbracket \eta \triangleq\{\varnothing\} \\
& \mathcal{G} \llbracket \Gamma, x: \tau \rrbracket \eta \triangleq\left\{\gamma, x \mapsto\left(V_{1}, V_{2}\right) \mid \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket \eta \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \eta\right\} \\
& \text { and define } \\
& \mathcal{D} \llbracket \varnothing \rrbracket \triangleq\{\varnothing\} \\
& \mathcal{D} \llbracket \Delta, \alpha \rrbracket \triangleq\left\{\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, \mathcal{R}\right) \mid \eta \in \mathcal{D} \llbracket \Delta \rrbracket \wedge R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right)\right\}
\end{aligned}
$$

Logical equivalence for open terms

Definition We define $\Delta ; \Gamma \vdash M \sim M^{\prime}: \tau$ as

$$
\wedge\left\{\begin{array}{l}
\Delta ; \Gamma \vdash M, M^{\prime}: \tau \\
\forall \eta \in \mathcal{D} \llbracket \Delta \rrbracket, \forall \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket_{\eta},\left(\eta_{1}\left(\gamma_{1} M_{1}\right), \eta_{2}\left(\gamma_{2} M_{2}\right)\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}
\end{array}\right.
$$

(Notations are a bit heavy, but intuitions should remain simple.)

Notation

We also write $M_{1} \sim_{\tau} M_{2}$ for $\vdash M_{1} \sim M_{2}: \tau\left(\right.$ i.e. $\left.\varnothing ; \varnothing \vdash M_{1} \sim M_{2}: \tau\right)$.
In this case, τ is a closed type and M_{1} and M_{2} are closed terms of type τ; hence, this coincides with the previous definition $\left(M_{1}, M_{2}\right)$ in $\mathcal{E} \llbracket \tau \rrbracket$, which may still be used as a shorthand for $\mathcal{E} \llbracket \tau \rrbracket \varnothing$.

Properties

Respect for observational equivalence

If $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}^{\sharp}$ and $N_{1} \cong \eta_{1}(\tau), M_{1}$ and $N_{2} \cong_{\eta_{2}(\tau)} M_{2}$ then $\left(N_{1}, N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rrbracket_{\eta}^{\sharp}$.

Requires admissibility
(We use ${ }^{\sharp}$ to indicate that admissibility is required in the definition of \mathcal{R}^{\sharp})
Proof. By induction on τ.
Assume $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}$ (1) and $N_{1} \cong \eta_{1}(\tau) M_{1}$ (2). We show $\left(N_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}$.

Case τ is $\forall \alpha . \sigma$: Assume $R \in \mathcal{R}^{\sharp}\left(\rho_{1}, \rho_{2}\right)$. Let η_{α} be $\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.
We have ($M_{1} \rho_{1}, M_{2} \rho_{2}$) $\mathcal{E} \llbracket \sigma \rrbracket_{\eta_{\alpha}}$, from (1).
By congruence from (2), we have $N_{1} \rho_{1} \cong \delta(\tau) M_{1} \rho_{1}$. Hence, by induction hypothesis, $\left(M_{1} \rho_{1}, M_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket_{\eta_{\alpha}}$, as expected.

Case τ is α : Relies on admissibility, indeed.
Other cases: the proof is similar to the case of the simply-typed λ-calculus.

Corollary

Properties

Lemma (Closure under observational equivalence)
If $\Delta ; \Gamma \vdash M_{1} \sim \sharp M_{2}: \tau$ and $\Delta ; \Gamma \vdash M_{1} \cong N_{1}: \tau$ and $\Delta ; \Gamma \vdash M_{2} \cong N_{2}: \tau$, then $\Delta ; \Gamma \vdash N_{1} \sim \sharp N_{2}: \tau$

Requires admissibility
Lemma (Compositionality)
Key lemma
Assume $\Delta \vdash \sigma$ and $\Delta, \alpha \vdash \tau$ and $\eta \in \mathcal{D} \llbracket \Delta \rrbracket$. Then,

$$
\mathcal{V} \llbracket \tau[\alpha \mapsto \sigma] \rrbracket_{\eta}=\mathcal{V} \llbracket \tau \rrbracket_{\eta, \alpha \mapsto\left(\eta_{1} \sigma, \eta_{2} \sigma, \mathcal{V} \llbracket \sigma \rrbracket_{\eta}\right)}
$$

Proof by induction on τ.

Parametricity

Theorem (Reflexivity) (also called the fundamental lemma) If $\Delta ; \Gamma \vdash M: \tau$ then $\Delta ; \Gamma \vdash M \sim M: \tau$.

Notice: Admissibility is not required for the fundamental lemma
Proof by induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

We redefine the lemmas to work in a typing context of the form Δ, Γ instead of Γ and add two new lemmas:

$$
\begin{aligned}
& \mathrm{C}-\mathrm{TABS} \\
& \Delta, \alpha ; \Gamma \vdash M_{1} \sim M_{2}: \tau \\
& \Delta ; \Gamma \vdash \Lambda \alpha \cdot M_{1} \sim \Lambda \alpha . M_{2}: \forall \alpha . \tau
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C-TAPP} \\
& \frac{\Delta ; \Gamma \vdash M_{1} \sim M_{2}: \forall \alpha . \tau \quad \Delta \vdash \sigma}{\Delta ; \Gamma \vdash M_{1} \sigma \sim M_{2} \sigma: \tau[\alpha \mapsto \sigma]}
\end{aligned}
$$

Proof of compatibility

Case M is $\Lambda \alpha . N$: We must show that $\Delta ; \Gamma \vdash \Lambda \alpha . N \sim \Lambda \alpha . N: \forall \alpha . \tau$. Assume $\eta: \delta \leftrightarrow \Delta \delta^{\prime}$ and $\gamma \sim_{\Gamma} \gamma^{\prime}\left[\eta: \delta \leftrightarrow \delta^{\prime}\right]$.

We must show $\gamma(\delta(\Lambda \alpha . N)) \sim_{\forall \alpha . \tau} \gamma^{\prime}(\delta(\Lambda \alpha . N)) \quad[\eta: \delta \leftrightarrow \delta]$.
Assume σ and σ^{\prime} closed and $R: \sigma \leftrightarrow \sigma^{\prime}$. We must show

$$
(\gamma(\delta(\Lambda \alpha . N))) \sigma \sim_{\tau}\left(\gamma^{\prime}\left(\delta^{\prime}(\Lambda \alpha . N)\right)\right) \sigma\left[\eta_{0}: \delta_{0} \leftrightarrow \delta_{0}^{\prime}\right]
$$

where $\eta_{0}=\eta, \alpha \mapsto R$ and $\delta_{0}=\delta, \alpha \mapsto \sigma$ and $\delta_{0}^{\prime}=\delta, \alpha \mapsto \sigma^{\prime}$.
Since

$$
(\gamma(\delta(\Lambda \alpha . N))) \sigma=(\Lambda \alpha \cdot \gamma(\delta(N))) \sigma \longrightarrow \gamma(\delta(N))[\alpha \mapsto \sigma]=\gamma\left(\delta_{0}(N)\right)
$$

It suffices to show

$$
\gamma\left(\delta_{0}(N)\right) \sim_{\tau} \gamma^{\prime}\left(\delta_{0}^{\prime}(N)\right)\left[\eta_{0}: \delta_{0} \leftrightarrow \delta_{0}^{\prime}\right]
$$

which follows by IH from $\Delta, \alpha ; \Gamma \vdash N: \tau$ (which we obtain from $\Delta, \Gamma \vdash \Lambda \alpha . N: \tau$ by inversion).

Proof of compatibility

Case M is $N \sigma$:
By inversion of typing $\Delta, \Gamma \vdash N: \forall \alpha . \tau_{0}(\mathbf{1})$ and τ is $\forall \alpha . \tau_{0}$.
We must show that $\Delta ; \Gamma \vdash N \sigma \sim N \sigma: \tau_{0}[\alpha \mapsto \sigma]$.
Assume $\eta: \delta \leftrightarrow_{\Delta} \delta^{\prime}$ and $\gamma \sim_{\Gamma} \gamma^{\prime}\left[\eta: \delta \leftrightarrow \delta^{\prime}\right]$. We must show

$$
\begin{gathered}
\gamma(\delta(N \sigma)) \sim_{\tau_{0}[\alpha \mapsto \sigma]} \gamma^{\prime}\left(\delta^{\prime}(N \sigma)\right)\left[\eta: \delta \leftrightarrow \delta^{\prime}\right] \\
\text { i.e. } \quad(\gamma(\delta(N))) \sigma \sim_{\tau_{0}[\alpha \mapsto \sigma]}\left(\gamma^{\prime}\left(\delta^{\prime}(N)\right)\right) \sigma\left[\eta: \delta \leftrightarrow \delta^{\prime}\right]
\end{gathered}
$$

By compositionality, it suffices to show

$$
\begin{equation*}
(\gamma(\delta(N))) \sigma \sim_{\tau_{0}}\left(\gamma^{\prime}\left(\delta^{\prime}(N)\right)\right) \sigma\left[\eta_{0}: \delta_{0} \leftrightarrow \delta_{0}^{\prime}\right] \tag{2}
\end{equation*}
$$

where $\eta_{0}=\eta, \alpha \mapsto R$ and $\delta_{0}=\delta, \alpha \mapsto \sigma$ and $\delta_{0}^{\prime}=\delta, \alpha \mapsto \sigma^{\prime}$ and $R: \delta(s) \leftrightarrow \delta^{\prime}(s)$ is defined by $R\left(N_{0}, N_{0}^{\prime}\right) \Longleftrightarrow N_{0} \sim_{\sigma} N_{0}^{\prime}\left[\eta: \delta \leftrightarrow \delta^{\prime}\right]$.
This relation is admissible (3). Hence by IH from (1), we have

$$
(\gamma(\delta(N))) \sim \forall \alpha . \tau_{0}\left(\gamma^{\prime}\left(\delta^{\prime}(N)\right)\right) \quad\left[\eta: \delta \leftrightarrow \delta^{\prime}\right]
$$

which implies (2) by definition of $\sim \forall \alpha . \tau_{0}$.

Properties

Soundness of logical equivalence

Logical equivalence implies observational equivalence.
If $\Delta ; \Gamma \vdash M_{1} \sim M_{2}: \tau$ then $\Delta ; \Gamma \vdash M_{1} \cong M_{2}: \tau$.

Completeness of logical equivalence

Observational equivalence implies logical equivalence with admissibility. If $\Delta ; \Gamma \vdash M_{1} \cong M_{2}: \tau$ then $\Delta ; \Gamma \vdash M_{1} \sim \not M_{2}: \tau$.

As a particular case, $M_{1} \cong_{\tau} M_{2}$ iff $M_{1} \sim_{\tau}^{\sharp} M_{2}$.
Note: Admissibility is not required for soundness-only for completeness.
That is, proofs that some observational equivalence hold do not usually require admissibility.

Properties

Extensionality
(A fact, hence does not depend on admissibility)
$M_{1} \cong_{\tau \rightarrow \sigma} M_{2}$ iff $\forall(V: \tau), M_{1} V \cong_{\sigma} M_{2} V$ iff $\forall(N: \tau), M_{1} N \cong_{\sigma} M_{2} N$
$M_{1} \cong \cong_{\forall \alpha . \tau} M_{2}$ iff for all closed type $\rho, M_{1} \rho \cong_{\tau[\alpha \leftrightarrow \rho]} M_{2} \rho$.
Proof. Forward direction is immediate as \cong is a congruence. Backward direction uses logical relations and admissibility, but the exported statement does not.

Case Value abstraction: It suffices to show $M_{1} \sim_{\tau \rightarrow \sigma} M_{2}$. That is, assuming $N_{1} \sim_{\tau} N_{2}$ (1), we show $M_{1} N_{1} \sim_{\sigma} M_{2} N_{2}$ (2). By assumption, we have $M_{1} N_{1} \cong_{\sigma} M_{2} N_{1}$ (3). By the fundamental lemma, we have $M_{2} \sim_{\tau \rightarrow \sigma} M_{2}$. Hence, from (1), we must have $M_{2} N_{1} \sim_{\sigma} M_{2} N_{2}$, We conclude (2) by respect for observational equivalence with (3)-which requires admissibility.

Case Type abstraction: It suffices to show $M_{1} \sim \forall \alpha . \tau M_{2}$. That is, given $R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right)$, we show ($\left.M_{1} \rho_{1}, M_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rrbracket_{\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)}$ (4).
By assumption, we have $M_{1} \rho_{1} \cong_{\tau\left[\alpha \leftrightarrow \rho_{1}\right]} M_{2} \rho_{1}$ (5).
By the fundamental lemma, we have $M_{2} \sim \forall \alpha . \tau ~ M_{2}$.
Hence, we have $\left(M_{2} \rho_{1}, M_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)}$
We conclude (4) by respect for observational equivalence with (5).

Properties

Identity extension

Requires admissibiily
Let θ be a substitution of type variables for ground types.
Let R be the restriction of $\cong_{\alpha \theta}$ to $\left.\operatorname{Val}(\alpha \theta) \times \operatorname{Val}(\alpha \theta)\right)$ and
$\eta: \alpha \mapsto(\alpha \theta, \alpha \theta, R)$.
Then $\mathcal{E} \llbracket \tau \rrbracket_{\eta}$ is equal to $\cong_{\tau \theta}$.
(The proof uses respect for observational equivalence, which requires admissibility)

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha$

Fact If $M: \forall \alpha . \alpha \rightarrow \alpha$, then $M \cong \cong_{\forall \alpha . \alpha \rightarrow \alpha} i d$ where $i d \triangleq \Lambda \alpha . \lambda x: \alpha . x$.
Proof By extensionality, it suffices to show that for any ρ and $V: \rho$ we have $M \rho V \cong_{\rho} i d \rho V$. In fact, by closure by inverse reduction, it suffices to show $M \rho V \cong_{\rho} V$ (1).

By parametricity, we have $M \sim \forall \alpha, \alpha \rightarrow \alpha M$ (2).
Consider R in $\mathcal{R}(\rho, \rho)$ equal to $\{(V, V)\}$ and η be $[\alpha \mapsto(\rho, \rho, R)]$. By construction, we have $(V, V) \in \mathcal{V} \llbracket \alpha \rrbracket \rrbracket_{\eta}$.

Hence, from (2), we have ($M \rho V, M \rho V$) $\in \mathbb{E} \llbracket \alpha \rrbracket \rrbracket_{\eta}$, which means that the pair ($M \rho V, M \rho V$) reduces to a pair of values in (the singleton) R. This implies that $M \rho V$ reduces to V, which in turn, implies (1).
(3) Admissibility is not needed

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) is in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt ff, $M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\forall \rho, V_{1}, V_{2}, \quad \bigvee\left\{\begin{array}{l}
\forall \rho, V_{1}, V_{2}, M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{tt} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
\forall \rho, V_{1}, V_{2}, M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B}$ tt ff is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) is in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt ff, $M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\forall \rho, V_{1}, V_{2}, \quad \bigvee\left\{\begin{array}{l}
\forall \rho, V_{1}, V_{2}, M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{tt} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
\forall \rho, V_{1}, V_{2}, M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B}$ tt ff is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) is in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt ff, $M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\forall \rho, V_{1}, V_{2}, \quad \bigvee\left\{\begin{array}{l}
\forall \rho, V_{1}, V_{2}, M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{tt} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
\forall \rho, V_{1}, V_{2}, M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B}$ tt ff is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong W_{1} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1} \quad$ or $M \cong W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have (tt,$\left.V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt ff,$M \rho V_{1} V_{2}$) is in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\forall \rho, V_{1}, V_{2}, \quad \bigvee\left\{\begin{array}{l}
\forall \rho, V_{1}, V_{2}, M \mathrm{~B} \text { tt ff } \cong_{\mathrm{B}}^{\mathrm{tt}} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
\forall \rho, V_{1}, V_{2}, M \mathrm{~B} \text { tt ff } \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B}$ tt ff is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong W_{1} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1} \quad$ or $M \cong W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong{ }_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathbf{0}, V_{1}\right),\left(\mathbf{1}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathbb{N}, \rho)$ and η be $\alpha \mapsto(\mathbb{N}, \rho, R)$. We have $\left(\mathbf{0}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathbf{0}, V_{1}\right)$ and, similarly, $\left(\mathbf{1}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathbb{N} \mathbf{0} \mathbf{1}, M \rho V_{1} V_{2}$) is in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathbb{N} \mathbf{0} \mathbf{1}, M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\forall \rho, V_{1}, V_{2}, \quad \bigvee\left\{\begin{array}{l}
\forall \rho, V_{1}, V_{2}, M \mathbb{N} \mathbf{0} \\
\mathbf{1}
\end{array} \cong_{\mathbb{N}} \mathbf{0} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} 1\right.
$$

Since, $M \mathbb{N} 01$ is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong{ }_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(W_{1}, V_{1}\right),\left(W_{2}, V_{2}\right)\right\}$ in $\mathcal{R}(\sigma, \rho)$ and η be $\alpha \mapsto(\sigma, \rho, R)$. We have $\left(W_{1}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(W_{1}, V_{1}\right)$ and, similarly, $\left(W_{2}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \sigma \quad W_{1} W_{2}, M \rho V_{1} V_{2}$) is in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \sigma \quad W_{1} W_{2}, M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\forall \rho, V_{1}, V_{2}, \quad \bigvee\left\{\begin{array}{llll}
\forall \rho, V_{1}, V_{2}, & M \sigma & W_{1} W_{2} \cong \sigma & W_{1} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
\forall \rho, V_{1}, V_{2}, & M \sigma & W_{1} W_{2} \cong \sigma & W_{2} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \sigma \quad W_{1} W_{2}$ is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Exercise

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha$

Redo the proof that all inhabitants of of $\forall \alpha . \alpha \rightarrow \alpha$ are observationally equivalent to the identity, following the schema that we used for booleans.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

That is, the inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$ are the Church naturals.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong \rho N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(S^{k} Z, V_{1}^{k} V_{2}\right) \mid k \in \mathbb{N}\right\}$ and η be $\alpha \mapsto($ nat, $\rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong \cong_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(S^{k} Z, V_{1}^{k} V_{2}\right) \mid k \in \mathbb{N}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(S^{k} Z, V_{1}^{k} V_{2}\right) \mid k \in \mathbb{N}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(S^{k} Z, V_{1}^{k} V_{2}\right) \mid k \in \mathbb{N}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(S^{k} Z, V_{1}^{k} V_{2}\right) \mid k \in \mathbb{N}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)
Indeed, assume $\left(W_{1}, W_{2}\right)$ in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. There exists k such that $W_{1}=S^{k} Z$ and $W_{2}=V_{1}^{k} V_{2}$. Thus, $\left(S W_{1}, V_{1} W_{2}\right)$ equal to $\left(S^{k+1} Z, V_{1}^{k+1} V_{2}\right)$ is in $\mathcal{E} \llbracket \alpha \rrbracket_{\eta}$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(S^{k} Z, V_{1}^{k} V_{2}\right) \mid k \in \mathbb{N}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)
Indeed, assume $\left(W_{1}, W_{2}\right)$ in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. There exists k such that $W_{1}=S^{k} Z$ and $W_{2}=V_{1}^{k} V_{2}$. Thus, $\left(S W_{1}, V_{1} W_{2}\right)$ equal to $\left(S^{k+1} Z, V_{1}^{k+1} V_{2}\right)$ is in $\mathcal{E} \llbracket \alpha \rrbracket_{\eta}$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(S^{k} Z, V_{1}^{k} V_{2}\right) \mid k \in \mathbb{N}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)
By parametricity, we have $M \sim_{\text {nat }} M$. Hence, (M nat $\left.S Z, M \rho V_{1} V_{2}\right) \in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$. Thus, there exists n such that M nat $S Z \cong_{n a t} S^{n} Z$ and $M \rho V_{1} V_{2} \cong_{\rho} V_{1}^{n} V_{2}$.
Since, M nat $S Z$ is independent of n, we may conclude (1), provided the $S^{n} Z$ are all in different observational equivalence classes (easy to check).

Applications Inhabitants of $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$

■ Left as an exercise...

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. Let C be $\lambda H: \tau . \lambda T:$ list. $\Lambda \alpha . \lambda n: \alpha . \lambda c: \tau \rightarrow \alpha \rightarrow \alpha . c H(T \alpha n c)$ and N be $\Lambda \alpha$. $\lambda n: \alpha$. $\lambda c: \tau \rightarrow \alpha \rightarrow \alpha$.n. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively by

$$
\mathcal{L}_{0} \triangleq\{N\} \text { and } \mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}
$$

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \sim_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$, since $N_{n} \rho V_{1} V_{2}$ reduces to $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)$ where all W_{k} are in $\operatorname{Val}(\tau)$. Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let R in $\mathcal{R}($ list,$\rho)$ be defined inductively as $\cup R_{n}$ where R_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in R_{k}\right\}$ and R_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{1}\right) \in R_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof)

Applications
 $$
\forall \alpha \cdot \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. Let C be $\lambda H: \tau . \lambda T:$ list. $\Lambda \alpha . \lambda n: \alpha . \lambda c: \tau \rightarrow \alpha \rightarrow \alpha . c H(T \alpha n c)$ and N be $\Lambda \alpha$. $\lambda n: \alpha$. $\lambda c: \tau \rightarrow \alpha \rightarrow \alpha$.n. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively by

$$
\mathcal{L}_{0} \triangleq\{N\} \text { and } \mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}
$$

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \sim_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$, since $N_{n} \rho V_{1} V_{2}$ reduces to $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)$ where all W_{k} are in $\operatorname{Val}(\tau)$. Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let R in $\mathcal{R}($ list,$\rho)$ be defined inductively as $\cup R_{n}$ where R_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in R_{k}\right\}$ and R_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{1}\right) \in R_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof)

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. Let C be $\lambda H: \tau . \lambda T:$ list. $\Lambda \alpha . \lambda n: \alpha . \lambda c: \tau \rightarrow \alpha \rightarrow \alpha . c H(T \alpha n c)$ and N be $\Lambda \alpha$. $\lambda n: \alpha$. $\lambda c: \tau \rightarrow \alpha \rightarrow \alpha$.n. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively by

$$
\mathcal{L}_{0} \triangleq\{N\} \text { and } \mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}
$$

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \sim_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$, since $N_{n} \rho V_{1} V_{2}$ reduces to $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)$ where all W_{k} are in $\operatorname{Val}(\tau)$. Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let R in $\mathcal{R}($ list,$\rho)$ be defined inductively as $\cup R_{n}$ where R_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in R_{k}\right\}$ and R_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{1}\right) \in R_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof)

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Encodable features

We have shown that all expressions of type nat behave as natural numbers. Hence, natural numbers are definable.

Still, we could also provide a type nat of natural numbers as primitive.
Then, we may extend

- behavioral equivalence: if $M_{1}: n a t$ and M_{2} : nat, we have $M_{1} \simeq_{n a t} M_{2}$ iff there exists $n:$ nat such that $M_{1} \Downarrow n$ and $M_{2} \Downarrow n$.
- logical equivalence: $\mathcal{V} \llbracket n a t \rrbracket \triangleq\{(n, n) \mid n \in \mathbb{N}\}$

All properties are preserved.

Encodable features

Products

Given closed types τ_{1} and τ_{2}, we defined

$$
\begin{aligned}
\tau_{1} \times \tau_{2} & \triangleq \forall \alpha \cdot\left(\tau_{1} \rightarrow \tau_{2} \rightarrow \alpha\right) \rightarrow \alpha \\
\left(M_{1}, M_{2}\right) & \triangleq \Lambda \alpha \cdot \lambda x: \tau_{1} \rightarrow \tau_{2} \rightarrow \alpha \cdot x M_{1} M_{2} \\
M . i & \triangleq M\left(\lambda x_{1}: \tau_{1} \cdot \lambda x_{2}: \tau_{2} \cdot x_{i}\right)
\end{aligned}
$$

Facts

If $M: \tau_{1} \times \tau_{2}$, then $M \cong_{\tau_{1} \times \tau_{2}}\left(M_{1}, M_{2}\right)$ for some $M_{1}: \tau_{1}$ and $M_{2}: \tau_{2}$.
If $M: \tau_{1} \times \tau_{2}$ and $M .1 \cong \overbrace{\tau_{1}} M_{1}$ and $M .2 \cong_{\tau_{2}} M_{2}$, then $M \cong \tau_{\tau_{1} \times \tau_{2}}\left(M_{1}, M_{2}\right)$

Primitive pairs

We may instead extend the language with primitive pairs. Then,

$$
\begin{aligned}
& \mathcal{V} \llbracket \tau \times \sigma \rrbracket_{\eta} \triangleq\left\{\left(\left(V_{1}, W_{1}\right),\left(V_{2}, W_{2}\right)\right)\right. \\
&\left.\quad\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}\right\}
\end{aligned}
$$

Sums

We define:

$$
\begin{aligned}
\mathcal{V} \llbracket \tau+\sigma \rrbracket_{\eta}= & \left\{\left(i n j_{1} V_{1}, i n j_{1} V_{2}\right) \mid\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta}\right\} \cup \cup \\
& \left\{\left(i n j_{2} W_{1}, i n j_{2} W_{2}\right) \mid\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}\right\}
\end{aligned}
$$

Notice that sums, as all datatypes, can also be encoded in System F.

Primitive Lists

We recursively ${ }^{1}$ define $\mathcal{V} \llbracket l i s t \tau \rrbracket_{\eta}$ as $\cup_{k} \mathcal{W}_{\eta}^{k}$ where \mathcal{W}_{η}^{0} is $\{($ Nil, Nil $)\}$ and \mathcal{W}_{η}^{k+1} is $\left\{\left(\right.\right.$ Cons $H_{1} T_{1}$, Cons $\left.\left.H_{2} T_{2}\right) \mid\left(H_{1}, H_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{W}_{\eta}^{k}\right\}$. Assume that $\left(\alpha \mapsto \rho_{1}, \rho_{2}, R\right) \in \eta$ where R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$ is the graph $\langle g\rangle$ of a function g, i.e. equal to $\left\{\left(V_{1}, V_{2}\right) \mid g V_{1} \Downarrow V_{2}\right\}$. Then, we have:
$\mathcal{V} \llbracket$ list $\alpha \rrbracket_{\eta}\left(W_{1}, W_{2}\right)$

$$
\begin{gathered}
\Longleftrightarrow \quad \exists k, \vee\left\{\begin{array}{c}
W_{1}=\text { Nil } \wedge W_{2}=\text { Nil } \\
W_{1}=\operatorname{Cons} H_{1} T_{1} \wedge W_{2}=\text { Cons } H_{2} T_{2} \wedge g H_{1} \Downarrow H_{2} \\
\wedge\left(T_{1}, T_{2}\right) \in \mathcal{W}_{\eta}^{k}
\end{array}\right. \\
\Longleftrightarrow \quad \operatorname{map} \rho_{1} \rho_{2} g W_{1} \Downarrow W_{2}
\end{gathered}
$$

${ }^{1}$ This definition is well-founded.

Applications

sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ boo $) \rightarrow$ list α

Fact: Assume sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α (1). Then

$$
\begin{array}{r}
\left(\forall x, y, \quad c m p_{2}(f x)(f y)=c m p_{1} x y\right) \Longrightarrow \\
\forall \ell, \text { sort } c m p_{2}(\operatorname{map} f \ell)=\operatorname{map} f\left(\operatorname{sortcmp} p_{1} \ell\right)
\end{array}
$$

Applications
 sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list α

Proof: Assume $\forall x, y, c p(f x)(f y) \cong c p x y)(\mathbf{H})$.
We have sort \sim_{σ} sort where σ is $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α.
Thus, for all ρ_{1}, ρ_{2}, and relations R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{align*}
& \forall\left(c p_{1}, c p_{2}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rightarrow \mathrm{B} \rrbracket_{\eta}, \tag{1}\\
& \left.\quad \forall\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta}, \quad\left(\text { sort } \rho_{1} c p_{1} \quad V_{1}, \text { sort } \rho_{2} c p_{2} \quad V_{2}\right) \in \mathcal{E} \llbracket \text { list } \alpha \rrbracket_{\eta}\right) \tag{2}
\end{align*}
$$

where η is $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$. We may choose R to be $\langle f\rangle$ for some f.
We have (1). Indeed, for all $\left(V_{1}, V_{2}\right)$ and $\left(W_{1}, W_{2}\right)$ in $\langle f\rangle$, we have $f V_{1} \Downarrow V_{1}$ and $f W_{1} \Downarrow W_{1}$, hence $c p_{2}\left(f V_{1}\right)\left(f W_{1}\right) \Downarrow c p_{1} V_{2} W_{2}$. Thus $c p_{2}\left(f V_{1}\right)\left(f W_{1}\right) \cong c p_{1} V_{2} W_{2}$. With (H), this implies $c p_{2} V_{1} W_{1} \cong c p_{1} V_{2} W_{2}$, i.e. $c p_{2} V_{1} W_{1} \sim c p_{1} V_{2} W_{2}$ since we are at type B, as expected. Hence (2) holds.

Since

$$
\mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta} \triangleq\left\langle\operatorname{map} \rho_{1} \rho_{2} f\right\rangle \subseteq \mathcal{V} \llbracket \rho_{1} \rrbracket \times \mathcal{V} \llbracket \rho_{2} \rrbracket
$$

(2) reads

$$
\forall V: \quad \text { list } \rho_{1}, V_{2}:: \text { list } \rho_{2}, ~\left(\exists W_{1}, W_{2},\left\{\begin{array}{l}
\operatorname{map} \rho_{1} \rho_{2} f W_{1} \\
\operatorname{map} \rho_{1} \rho_{2} f V \Downarrow V_{2} \Longrightarrow \rho_{1} c p_{1} V \Downarrow W_{1} \\
\operatorname{sort} \rho_{2} c p_{2} V_{2}
\end{array}\right.\right.
$$

Applications

whoami $: \forall \alpha$. list $\alpha \rightarrow$ list α

Left as an exercise...

Existential types

We define:

$$
\begin{aligned}
\mathcal{V} \llbracket \exists \alpha . \tau \rrbracket_{\eta} \triangleq & \left\{\left(\text { pack } V_{1}, \rho_{1} \text { as } \exists \alpha . \tau, \text { pack } V_{2}, \rho_{2} \text { as } \exists \alpha . \tau\right) \mid\right. \\
& \left.\exists \rho_{1}, \rho_{2}, R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right), \quad\left(V_{1}, V_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)}\right\}
\end{aligned}
$$

Compare with

$$
\begin{aligned}
\mathcal{V} \llbracket \forall \alpha \cdot \tau \rrbracket_{\eta}= & \left\{\left(\Lambda \alpha \cdot M_{1}, \Lambda \alpha \cdot M_{2}\right) \mid\right. \\
& \forall \rho_{1}, \rho_{2}, R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right), \\
& \left.\left(\left(\Lambda \alpha \cdot M_{1}\right) \rho_{1},\left(\Lambda \alpha . M_{2}\right) \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)}\right\}
\end{aligned}
$$

Existential types

Example
Consider $V_{1} \triangleq(n o t, t \mathrm{tt})$, and $V_{2} \triangleq($ succ, 0$)$ and $\sigma \triangleq(\alpha \rightarrow \alpha) \times \alpha$. Let $R \in \mathcal{R}($ bool, nat $)$ be $\{(\mathrm{tt}, 2 n),(\mathrm{ff}, 2 n+1) \mid n \in \mathbb{N}\}$ and η be $\alpha \mapsto($ bool , nat, $R)$.
We have $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}$.
Hence, (pack V_{1}, bool as $\exists \alpha . \sigma$, pack V_{2}, nat as $\exists \alpha . \sigma$) $\in \mathcal{V} \llbracket \exists \alpha . \sigma \rrbracket$.
Proof of $(($ not, tt) $),($ succ,, 0$)) \in \mathcal{V} \llbracket(\alpha \rightarrow \alpha) \times \alpha \rrbracket_{\eta}(\mathbf{1})$
We have $(\mathrm{tt}, 0) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, since $(\mathrm{tt}, 0) \in R$.
We also have (not, succ) $\in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$, which proves (1). Indeed, assume $\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. Then (W_{1}, W_{2}) is either of the form

- ($\mathrm{tt}, 2 n$) and (not W_{1}, succ W_{2}) reduces to (ff, $2 n+1$), or
- (ff, $2 n+1$) and (not W_{1}, succ W_{2}) reduces to ($\mathrm{tt}, 2 n+2$).

In both cases, (not W_{1}, succ W_{2}) reduces to a pair in R. Hence, $\left(\operatorname{not} W_{1}\right.$, succ $\left.W_{2}\right) \in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$.

Representation independence

A client of an existential type $\exists \alpha . \tau$ should not see the difference between two implementations N_{1} and N_{2} of $\exists \alpha . \tau$ with witness types ρ_{1} and ρ_{2}.

A client M has type $\forall \alpha . \tau \rightarrow \sigma$ with $\alpha \notin \operatorname{fv}(\sigma)$; it must use the argument parametrically, and the result is independent of the witness type.

Assume that ρ_{1} and ρ_{2} are two closed representation types and R is in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$. Let η be $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.

Suppose that $N_{1}: \tau\left[\alpha \mapsto \rho_{1}\right]$ and $N_{2}: \tau\left[\alpha \mapsto \rho_{2}\right]$ are two equivalent implementations of the operations, i.e. such that $\left(N_{1}, N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}$.

A client M satisfies $(M, M) \in \mathcal{E} \llbracket \forall \alpha . \tau \rightarrow \sigma \rrbracket \rrbracket_{\eta}$. Thus ($M \rho_{1} N_{1}, M \rho_{2} N_{2}$) is in $\mathcal{E} \llbracket \sigma \rrbracket$ (as α is not free in σ).

That is, $M \rho_{1} N_{1} \cong \cong_{\sigma} M \rho_{2} N_{2}$: the behavior with the implementation N_{1} with representation type ρ_{1} is indistinguishable from the behavior with the implementation N_{2} with representation type ρ_{2}.

How do we deal with recursive types?

Assume that we allow equi-recursive types.

$$
\tau::=\ldots \mid \mu \alpha . \tau
$$

A naive definition would be

$$
\mathcal{V} \llbracket \mu \alpha . \tau \rrbracket_{\eta}=\mathcal{V} \llbracket[\alpha \mapsto \mu \alpha . \tau] \tau \rrbracket_{\eta}
$$

But this is ill-founded.
The solution is to use indexed-logical relations.
We use a sequence of decreasing relations indexed by integers (fuel), which is consumed during unfolding of recursive types.

Step-indexed logical relations

(a taste)

We define a sequence $\mathcal{V}_{k} \llbracket \tau \rrbracket_{\eta}$ indexed by natural numbers $n \in \mathbb{N}$ that relates values of type τ up to n reduction steps. Omitting typing clauses:

$$
\begin{aligned}
\mathcal{V}_{k} \llbracket \mathrm{~B} \rrbracket_{\eta}= & \{(\mathrm{tt}, \mathrm{tt}),(\mathrm{ff}, \mathrm{ff})\} \\
\mathcal{V}_{k} \llbracket \tau \rightarrow \sigma \rrbracket_{\eta}= & \left\{\left(V_{1}, V_{2}\right) \mid \forall j<k, \forall\left(W_{1}, W_{2}\right) \in \mathcal{V}_{j} \llbracket \tau \rrbracket_{\eta},\right. \\
& \left.\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E}_{j} \llbracket \sigma \rrbracket_{\eta}\right\} \\
\mathcal{V}_{k} \llbracket \alpha \rrbracket_{\eta}= & \eta_{R}(\alpha) . k \\
\mathcal{V}_{k} \llbracket \forall \alpha \cdot \tau \rrbracket_{\eta}= & \left\{\left(V_{1}, V_{2}\right) \mid \forall \rho_{1}, \rho_{2}, R \in \mathcal{R}^{k}\left(\rho_{1}, \rho_{2}\right), \forall j<k,\right. \\
& \left.\left(V_{1} \rho_{1}, V_{2} \rho_{2}\right) \in \mathcal{V}_{j} \llbracket \tau \rrbracket_{\eta, \alpha \leftrightarrow\left(\rho_{1}, \rho_{2}, R\right)}\right\} \\
\mathcal{V}_{k} \llbracket \mu \alpha \cdot \tau \rrbracket_{\eta}= & \left.\mathcal{V}_{k-1} \llbracket \alpha \mapsto \mu \alpha \cdot \tau\right] \tau \rrbracket_{\eta} \\
\mathcal{E}_{k} \llbracket \tau \rrbracket_{\eta}= & \left\{\left(M_{1}, M_{2}\right) \mid \forall j<k, M_{1} \Downarrow_{j} V_{1}\right. \\
& \left.\xlongequal{\Longrightarrow} \exists V_{2}, M_{2} \Downarrow V_{2} \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V}_{k-j} \llbracket \tau \rrbracket_{\eta}\right\}
\end{aligned}
$$

By \Downarrow_{j} means reduces in j-steps.
$\mathcal{R}^{j}\left(\rho_{1}, \rho_{2}\right)$ is composed of sequences of decreasing relations between closed values of closed types ρ_{1} and ρ_{2} of length (at least) j.

Step-indexed logical relations

(a taste)

The relation is asymmetric.
If $\Delta ; \Gamma \vdash M_{1}, M_{2}: \tau$ we define $\Delta ; \Gamma \vdash M_{1} \precsim M_{2}: \tau$ as $\forall \eta \in \mathcal{R}_{\Delta}^{k}\left(\delta_{1}, \delta_{2}\right), \forall\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{G}_{k} \llbracket \Gamma \rrbracket, \quad\left(\gamma_{1}\left(\delta_{1}\left(M_{1}\right)\right), \gamma_{2}\left(\delta_{2}\left(M_{2}\right)\right) \in \mathcal{E}_{k} \llbracket \tau \rrbracket \eta\right.$ and

$$
\Delta ; \Gamma \vdash M_{1} \sim M_{2}: \tau \triangleq \bigwedge\left\{\begin{array}{l}
\Delta ; \Gamma \vdash M_{1} \precsim M_{2}: \tau \\
\Delta ; \Gamma \vdash M_{2} \precsim M_{1}: \tau
\end{array}\right.
$$

Notations and proofs get a bit involved...
Notations may be simplified by introducing a later guard \triangleright to capture incrementation of the index and avoid the explicit manipulation of integers (but the meaning remains the same).

Logical relations for F^{ω} ?

Logical relations can be generalized to work for F^{ω}, indeed.
There is a slight complication though in the interpretation of type functions.

This is out of this course scope, but one may, for instance, read [Atkey, 2012].

Bibliography I

(Most titles have a clickable mark " \triangleright " that links to online versions.)
\triangle Robert Atkey. Relational parametricity for higher kinds. In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL, volume 16 of Leibniz International Proceedings in Informatics (LIPIcs), pages 46-61, 2012. doi: 10.4230/LIPIcs.CSL.2012.46.
\triangleright Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing
Polymorphic Properties, pages 125-144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-11957-6. doi:
10.1007/978- $\sigma_{2} 3-\sigma_{2} 642-\sigma_{2} 11957-\sigma_{2} 6 _8$.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, 2012.
J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda-Calculus. Cambridge University Press, 1986.

Bibliography II

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
\triangle Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10:321-359, 2000.
\triangleright John C. Reynolds. Types, abstraction and parametric polymorphism. In Information Processing 83, pages 513-523. Elsevier Science, 1983.

- W. W. Tait. Intensional interpretations of functionals of finite type i. The Journal of Symbolic Logic, 32(2):pp. 198-212, 1967. ISSN 00224812.
- Philip Wadler. Theorems for free! In Conference on Functional Programming Languages and Computer Architecture (FPCA), pages 347-359, September 1989.

D Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer Science, 375(1-3):201-226, May 2007.

